[1] |
高翔, 张涛, 刘毅. 视觉SLAM十四讲:从理论到实践[M]. 北京: 电子工业出版社, 2019.
|
|
Gao Xiang, Zhang Tao, Liu Yi. Visual SLAM: from theory to practice[M]. Beijing: Publishing House of Electronics Industry, 2019.
|
[2] |
Davison A J, Reid I D, Molton N D. MonoSLAM: Real-time single camera slam[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6):1052-1067.
pmid: 17431302
|
[3] |
De Croce M, Pire T, Bergero F. DS-PTAM: distributed stereo parallel tracking and mapping slam system[J]. Journal of Intelligent & Robotic Systems, 2019, 95(2):365-377.
|
[4] |
Mur-Artal R, Tardos J D. ORB-SLAM2: An open-source slam system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017, 33(5):1255-1262.
doi: 10.1109/TRO.2017.2705103
|
[5] |
Enhel J, Schoeps T, Cremers D. LSD-SLAM: Large-scale direct monocular slam[C]. Zurich:Proceedingss of the European Conference on Computer Vision, 2014.
|
[6] |
Forster C, Zhang Z, Gassner M. SVO: Semidirect visual odometry for monocular and multicamera systems[J]. IEEE Transactions on Robotics, 2016, 33(2):249-265.
doi: 10.1109/TRO.2016.2623335
|
[7] |
Engel J, Koltun V, Cremers D. Direct sparse odometry[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(3):611-625.
doi: 10.1109/TPAMI.2017.2658577
|
[8] |
Yang S, Wang J, Wang G, et al. Robust RGB-D slam in dynamic environment using faster R-CNN[C]. Chengdu:IEEE International Conference on Computer and Communications, 2017.
|
[9] |
Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031
|
[10] |
Zhong F, Wang S, Zhang Z, et al. Detect-SLAM: Making object detection and slam mutually beneficial[C]. Lake Tahoe:Proceedingss of the IEEE Winter Conference on Applications of Computer Vision, 2018.
|
[11] |
Wang Y B, Huang S D. Towards dense moving object segmentation based robust dense RGB-D slam in dynamic scenarios[C]. Singapore:Proceedingss of the Thirteenth International Conference on Control Automation Robotics & Vision, 2014.
|
[12] |
Bescos B, Facil J M, Civera J, et al. Dynaslam: Tracking, mapping, and inpainting in dynamic scenes[J]. IEEE Robotics and Automation Letters, 2018, 3(4):4076-4083.
doi: 10.1109/LRA.2018.2860039
|
[13] |
Yu C, Liu Z X, Liu X J, et al. DS-SLAM: A semantic visual slam towards dynamic environments[C]. Madrid:Proceedingss of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2018.
|
[14] |
He K, Gkioxari G, Dollar P, et al. Mask R-CNN[C]. Venice:Proceedingss of the IEEE International Conference on Computer Vision, 2017.
|
[15] |
叶飞, 刘子龙. 基于改进YOLOv3算法的行人检测研究[J]. 电子科技, 2021, 34(1):5-9.
|
|
Ye Fei, Liu Zilong. Pedestrian detection based on improved YOLOv3 algorithm[J]. Electronic Science and Technology, 2021, 34(1):5-9.
|
[16] |
Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]. Seattle:Proceedingss of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[17] |
Tateno K, Tombari F, Laina I, et al. CNN-SLAM: Real-time dense monocular slam with learned depth prediction[C]. Honolulu:Proceedingss of the Conference on Computer Vision and Pattern Recognition, 2017.
|
[18] |
Sturm J, Engelhard N, Endres F, et al. A benchmark for the evaluation of RGB-D slam systems[C]. Vilamoura-Algarve:Proceedingss of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.
|
[19] |
张慧丽, 彭晓东, 谢文明, 等. 一种动态光照下视觉VSLAM中的场景特征匹配方法[J]. 电子设计工程, 2018, 26(24):1-5.
|
|
Zhang Huili, Peng Xiaodong, Xie Wenming, et al. A method of feature matching under changing illumination in VSLAM[J]. Electronic Design Engineering, 2018, 26(24):1-5.
|