电子科技 ›› 2022, Vol. 35 ›› Issue (7): 7-13.doi: 10.16180/j.cnki.issn1007-7820.2022.07.002

• • 上一篇    下一篇

小样本下基于CNN-DCGAN的电缆局部放电模式识别方法

孙抗1,轩旭阳1,刘鹏辉1,赵来军1,龙洁2   

  1. 1. 河南理工大学 电气工程与自动化学院,河南 焦作 454000
    2. 国网河南省电力公司 焦作供电公司,河南 焦作 454000
  • 收稿日期:2021-01-28 出版日期:2022-07-15 发布日期:2022-08-16
  • 作者简介:孙抗(1982-),男,博士,副教授。研究方向:电气设备在线监测与故障诊断、新型传感器原理及其应用。
  • 基金资助:
    河南省科技攻关项目(202102210092);河南省产学研合作项目(132107000027)

Partial Discharge Pattern Recognition of Cable Based on CNN-DCGAN under Small Data

SUN Kang1,XUAN Xuyang1,LIU Penghui1,ZHAO Laijun1,LONG Jie2   

  1. 1. School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo 454000,China
    2. Jiaozuo Power Supply Company,State Grid Henan Electric Power Company,Jiaozuo 454000,China
  • Received:2021-01-28 Online:2022-07-15 Published:2022-08-16
  • Supported by:
    Science and Technology Project of Henan(202102210092);Henan Industry-University-Research Cooperation Project(132107000027)

摘要:

在电缆局部放电模式识别过程中,传统人工特征提取依赖特定领域的知识及经验,特征选择和优化工作量较大。针对该问题并为了避免非均衡小样本数据下分类器的过拟合,文中提出了一种在小样本的情况下基于CNN-DCGAN的电缆局部放电模式的识别方法。利用滑动时间窗将局部放电时域信号转化为二维图像信息,构建深度卷积生成对抗网络,在原始数据集的基础上进行样本增强,将原始样本和增强样本作为系统输入,构造卷积神经网络,利用其非线性编码器自动提取局部放电特征,并通过Softmax层训练特征分类模型。实验结果表明,相较于人工特征,基于自动特征提取的CNN分类器识别准确率提高了4.18%。相较于原有数据集,基于样本增强数据集的系统识别准确率提高了3.175%

关键词: 局部放电, 特征提取, 样本增强, 卷积神经网络, 生成对抗网络, 模式识别, 绝缘缺陷, 时域信号

Abstract:

In the process of cable partial discharge pattern recognition, the traditional manual feature extraction relies on the knowledge and experience of specific fields, and the workload of feature selection and optimization is heavy. In view of this problem and to avoid the overfitting problem of the classifier under the unbalanced small sample data of the model, this study presents a partial discharge pattern recognition method based on CNN-DCGAN in the case of small samples. Partial discharge time domain signals are transformed into two-dimensional image information by sliding time window. The DCGANs are constructed, and the data enhancement is carried out on the basis of the original data set. The original data and the enhanced data are taken as the system input. CNN is constructed, and its nonlinear encoder is used to automatically extract partial discharge features, and the feature classification model is trained by Softmax layer. Experimental results show that compared with artificial features, the recognition accuracy of CNN classifier based on automatic feature extraction is improved by 4.18%. Compared with the original data set, the system recognition accuracy based on the sample enhanced data set is improved by 3.175%.

Key words: partial discharge, feature extraction, data augmentation, convolution neural networks, generative adversarial networks, pattern recognition, insulation defect, time domain signal

中图分类号: 

  • TP181