[1] |
Zhao B, Yang M, Diao H R, et al. A novel approach to transformer fault diagnosis using IDM and naive credal classifier[J]. International Journal of Electrical Power and Energy Systems, 2019, 105(2):846-855.
|
[2] |
Li J, Li G, Hai C, et al. Transformer fault diagnosis based on multiclass AdaBoost algorithm[J]. IEEE Access, 2022(10):1522-1532.
|
[3] |
Manoj T, Ranga C. Oil health index calculation and incipient fault diagnosis in power transformers using fuzzy logic[J]. Insight:Non-Destructive Testing and Condition Monitoring, 2022, 64(1):28-37.
|
[4] |
Taha I, Hoballah A, Ghoneim S. Optimal ratio limits of Rogers' four-ratios and IEC 60599 code methods using particle swarm optimization fuzzy-logic approach[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(1):222-230.
|
[5] |
Lopes S, Flauzino R A, Altafim R. Incipient fault diagnosis in power transformers by data-driven models with over-sampled dataset[J]. Electric Power Systems Research, 2021, 201(6):1-8.
|
[6] |
汪徐阳, 易映萍, 李田丰. 一种用于变压器故障诊断的卷积神经网络优化方法[J]. 电子科技, 2023, 36(12):79-86.
|
|
Wang Xuyang, Yi Yingping, Li Tianfeng. A convolutional neural network optimization method for fault diagnosis of power transformer[J]. Electronic Science and Technology, 2023, 36(12):79-86.
|
[7] |
Mohammad T A, Seyed J, Tabatabaei S, et al. Power transformer fault diagnosis using DGA and artificial intelligence[J]. Recent Advances in Computer Science and Communications, 2020, 13(4):579-587.
|
[8] |
Zhang Y Y, Wang Y X, Fan X H. An integrated model for transformer fault diagnosis to improve sample classification near decision boundary of support vectormachine[J]. Energies, 2020, 13(24):1-15.
|
[9] |
曹淑睿, 李目, 耿召里. 油浸式变压器故障诊断方法研究[J]. 现代制造技术与装备, 2022, 58(9):29-31.
|
|
Cao Shurui, Li Mu, Geng Zhaoli. Research on fault diagnosis method of oil-immersed transformer[J]. Modern Manufacturing Technology and Equipment, 2022, 58(9):29-31.
|
[10] |
Manoj T, Ranga C. Oil health index calculation and incipient fault diagnosis in power transformers using fuzzy logic[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2022, 64(1):28-37.
|
[11] |
王阳, 力健, 周谦, 等. 基于小波包分析与神经网络的变压器区内外故障判断方法[J]. 电测与仪表, 2020, 57(7):1-7.
|
|
Wang Yang, Li Jian, Zhou Qian, et al. Inner and outer zone fault diagnosis method of transformer based on wavelet packet analysis and neural network[J]. Electrical Measurement and Instrumentation, 2020, 57(7):1-7.
|
[12] |
Zhao W G, Wang L Y. Fault diagnosis of power transformer based on DDAG-SVM[J]. Advanced Materials Research, 2010, 970(121-122):819-824.
|
[13] |
Zheng Y, Zhao F, Wang Z. Fault diagnosis system of bridge crane equipment based on fault tree and Bayesian network[J]. International Journal of Advanced Manufacturing Technology, 2019, 105(9):3605-3618.
|
[14] |
Li S, Chen H, Wang M, et al. Slime mould algorithm: A new method for stochastic optimization[J]. Future Generation Computer Systems, 2020, 11(1):300-323.
|
[15] |
孙辉, 邓志诚, 赵嘉, 等. 优质个体最优动态空间变异的粒子群优化算法[J]. 计算机应用研究, 2020, 37(8):2344-2348.
|
|
Sun Hui, Deng Zhicheng, Zhao Jia, et al. Particle swarm optimization for dynamic spatial variability of superior quality individuals[J]. Application Research of Computers, 2020, 37(8):2344-2348.
|
[16] |
Gures D, Bureerat S, Sait S M, et al. Comparison of the arithmetic optimization algorithm, the slime mold optimization algorithm,the marine predators algorithm,the salp swarm algorithm for realworld engineering applications[J]. Materials Testing, 2021, 63(5):448-452.
|
[17] |
仝兆景, 乔征瑞, 李金香, 等. 基于改进麻雀搜索算法优化BN的变压器故障诊断研究[J]. 电子科技, 2023, 36(4):52-58.
|
|
Tong Zhaojing, Qiao Zhengrui, Li Jinxiang, et al. Research on transformer fault diagnosis based on improved sparrow search algorithm optimization BN[J]. Electronic Science and Technology, 2023, 36(4):52-58.
|
[18] |
仝兆景, 秦紫霓, 赵运星, 等. 基于贝叶斯网络的变压器故障诊断研究[J]. 电子科技, 2021, 34(3):43-47.
|
|
Tong Zhaojing, Qin Zini, Zhao Yunxing, et al. Research on transformer fault diagnosis based on Bayesian network[J]. Electronic Science and Technology, 2021, 34(3):43-47.
|