[1] |
潘建文, 崔展齐, 林高毅, 等. Android恶意应用静态检测方法研究综述[J]. 计算机研究与发展, 2023, 60(8):1875-1894.
|
|
Pan Jianwen, Cui Zhanqi, Lin Gaoyi, et al. A review of static android malware detection methods[J]. Journal of Computer Research and Development, 2023, 60(8):1875-1894.
|
[2] |
Wang C D. An Android malware dynamic detection method based on service call cooccurrence matrices[J]. Annals of Telecommunications, 2017, 72(9-10):607-615.
|
[3] |
范铭, 刘烃, 刘均, 等. 安卓恶意软件检测方法综述[J]. 中国科学(信息科学), 2020, 50(8):1148-1177.
|
|
Fan Ming, Liu Ting, Liu Jun, et al. Android malware detection:A survey[J]. Science in China(Information of S-ciences), 2020, 50(8):1148-1177.
|
[4] |
王志文, 刘广起, 韩晓晖, 等. 基于机器学习的恶意软件识别研究综述[J]. 小型微型计算机系统, 2022, 43(12):2628-2637.
|
|
Wang Zhiwen, Liu Guangqi, Han Xiaohui, et al. Survey on machine-learning-based malware identification research[J]. Journal of Chinese Computer Systems, 2022, 43(12):2628-2637.
|
[5] |
瞿俊, 顾刘军. 基于朴素贝叶斯的安卓恶意软件检测研究[J]. 信息网络安全, 2020(S1):27-30.
|
|
Qu Jun, Gu Liujun. Android malware detection research based on naive Bayesian[J]. Netinfo Security, 2020(S1):27-30.
|
[6] |
Teufl P. Malware detection by applying knowledge discovery processes to application metadata on the Android market(Google Play)[J]. Security and Communication Networks, 2016, 9(5):389-419.
|
[7] |
褚堃, 万良, 马丹, 等. 深度可分离卷积在Android恶意软件分类的应用研究[J]. 计算机应用研究, 2022, 39(5):1534-1540.
|
|
Chu Kun, Wan Liang, Ma Dan, et al. Research on application of depthwise separable convolution in Android malware classification[J]. Application Research of Computers, 2022, 39(5):1534-1540.
|
[8] |
张雪涛, 王金双, 孙蒙. 基于GCN的安卓恶意软件检测模型[J]. 软件导刊, 2020, 19(7):187-193.
|
|
Zhang Xuetao, Wang Jinshuang, Sun Meng. GCN-based Android malware detection model[J]. Software Guide, 2020, 19(7):187-193.
|
[9] |
李璐. 基于函数调用图的Android恶意软件检测[J]. 现代计算机, 2018, 19(12):28-33.
|
|
Li Lu. Android malware detection based on function call graph[J]. Modern Computer, 2018, 19(12):28-33.
|
[10] |
潘梦竹, 李千目, 邱天. 深度多模态表示学习的研究综述[J]. 计算机工程与应用, 2023, 59(2):48-64.
doi: 10.3778/j.issn.1002-8331.2206-0145
|
|
Pan Mengzhu, Li Qianmu, Qiu Tian. Survey of research on deep multimodal representation learning[J]. Computer Engineering and Applications, 2023, 59(2):48-64.
doi: 10.3778/j.issn.1002-8331.2206-0145
|
[11] |
Guen K T, Kang B J, Mina R, et al. A multimodal deep learning method for android malware detection using various features[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(3):773-788.
|
[12] |
Mohamed G, Abdelmalek A. A new wrapper-based feature selection technique with fireworks algorithm for Android malware detection[J]. International Journal of Software Science and Computational Intelligence, 2022, 14(1):1-19.
|
[13] |
Íbrahim Doĝru A, Önder M. AppPerm analyzer:Malware detection system based on Android permissions and permission groups[J]. International Journal of Software Engineering and Knowledge Engineering, 2020, 30(3):24-30.
|
[14] |
Altaher A, Barukab O M. Intelligent hybrid approach for Android malware detection based on permissions and API calls[J]. International Journal of Advanced Computer Science and Applications, 2017, 8(6):60-67.
|
[15] |
Lu Y, Zulie P, Jingju L, et al. Android malware detectiontechnology based on improved Bayesian classification[C]. Shenyang: The Third International Conference on Instrumentation,Measurement,Computer,Communication and Control, 2013:112-130.
|
[16] |
Khariwal K, Gupta R, Singh J, et al. R-MFDroid:Android malware detection using ranked manifest file components[J]. International Journal of Innovative Technology and Exploring Engineering, 2021, 10(7):55-64.
|
[17] |
Wu D J, Mao C H, Wei H M, et al. DroidMat:Android malware detection through manifest and API calls tracing[C]. Tokyo: The Seventh Asia Joint Conference onInformation Security, 2012:172-180.
|
[18] |
Thongsuwan S, Jaiyen S, Padcharoen A, et al. ConvXGB:A new deep learning model for classification problems based on CNN and XGBoost[J]. Nuclear Engineering and Technology, 2021, 53(2):522-531.
|
[19] |
Fang W, Zhang L, Wang C, et al. AMC-MDL:A novel approach of Android malware classification using multimodel deep learning[C]. Calgary: IEEE International Conference on Dependable,Autonomic and Secure Computing,International Conference on Pervasive Intelligence and Computing,International Conference on Cloud and Big Data Computing,International Conference on Cyber Science and Technology Congress, 2020:108-127.
|
[20] |
Jerome Q, Allix K, State R, et al. Using opcode-sequences to detect malicious Android applications[C]. New South Wales: IEEE International Conference on Communications, 2014:76-90.
|
[21] |
Ding Y, Hu J, Xu W, et al. A deep feature fusion method for Android malware detection[C]. Kobe: International Conference on Machine Learning and Cybernetics IEEE, 2019:1121-1134.
|
[22] |
Yan J P, Qi Y, Rao Q F. LSTM-based hierarchical denoising network for Android malware detection[J]. Security and Communication Networks, 2018, 20(8):1-18.
|
[23] |
Amin M, Tanveer T A, Tehseen M, et al. Static malware detection and attribution in android bytecode throughan end-to-end deep system[J]. Future Generation Computer Systems, 2020, 10(2):112-126.
|
[24] |
Shikha B, Sunil K M. GENDroid:A graph-based ensemble classifier for detecting Android malware[J]. International Journal of Information and Computer Security, 2022, 18(3-4):327-347.
|
[25] |
Cai M, Jiang Y, Gao C, et al. Learning features from enhanced function call graphs for Android malware detection[J]. Neurocomputing, 2021, 42(3):301-307.
|
[26] |
杨铭, 张健. 基于图像识别的恶意软件静态检测模型[J]. 信息网络安全, 2021, 21(10):25-32.
|
|
Yang Ming, Zhang Jian. Static detection model based on image recognition[J]. Netinfo Security, 2021, 21(10):25-32.
|
[27] |
朱斌, 刘子龙. 基于新型初始模块的卷积神经网络图像分类方法[J]. 电子科技, 2021, 34(2):52-56.
|
|
Zhu Bin, Liu Zilong. Image classification method using convolutional neural network based on new initial module[J]. Electronic Science and Technology, 2021, 34(2):52-56.
|
[28] |
程俊华, 曾国辉, 刘瑾. 基于深度学习的复杂背景图像分类方法研[J]. 电子科技, 2020, 33(12):59-66.
|
|
Cheng Junhua, Zeng Guohui, Liu Jin. Research on complex background image classification method based on deep learning[J]. Electronic Science and Technology, 2020, 33(12):59-66.
|
[29] |
张锐, 杨吉云. 基于权限相关性的Android恶意软件检测[J]. 计算机应用, 2014, 34(5):1322-1325.
doi: 10.11772/j.issn.1001-9081.2014.05.1322
|
|
Zhang Rui, Yang Jiyun. Android malware detection based on permission correlation[J]. Journal of Computer Applications, 2014, 34(5):1322-1325.
doi: 10.11772/j.issn.1001-9081.2014.05.1322
|
[30] |
王思远, 张仰森, 曾健荣, 等. Android恶意软件检测方法综述[J]. 计算机应用与软件, 2021, 38(9):1-9.
|
|
Wang Siyuan, Zhang Yangsen, Zeng Jianrong, et al. Overview of Android malware detection methods[J]. Computer Applications and Software, 2021, 38(9):1-9.
|
[31] |
李剑, 朱月俊. 基于权限的安卓恶意软件检测方法[J]. 信息安全研究, 2017, 3(9):817-822.
|
|
Li Jian, Zhu Yuejun. Detection method of Android malware by using permission[J]. Journal of Information Security Research, 2017, 3(9):817-822.
|
[32] |
张雪涛, 孙蒙, 王金双. 基于操作码的安卓恶意代码多粒度快速检测方法[J]. 网络与信息安全学报, 2019, 5(6):85-94.
|
|
Zhang Xuetao, Sun Meng, Wang Jinshuang. Multigranularity Android malware fast detection based on opcode[J]. Chinese Journal of Network and Information Security, 2019, 5(6):85-94.
|
[33] |
陈铁明, 徐志威. 基于API调用序列的Android恶意代码检测方法研究[J]. 浙江工业大学学报, 2018, 46(2):147-154.
|
|
Chen Tieming, Xu Zhiwei. Research on detection of Android malicious code based on API call sequence[J]. Journal of Zhejiang University of Technology, 2018, 46(2):147-154.
|
[34] |
陈铁明, 项彬彬, 吕明琪, 等. 基于字节码图像和深度学习的Android恶意应用检测[J]. 电信科学, 2019, 35(1):9-17.
doi: 10.11959/j.issn.1000-0801.2019022
|
|
Chen Tieming, Xiang Binbin, Lv Mingqi, et al. Android malware detection method based on bytecode image and deep learning[J]. Telecommunications Science, 2019, 35(1):9-17.
doi: 10.11959/j.issn.1000-0801.2019022
|
[35] |
李自清. 基于函数调用图的Android恶意代码检测方法研究[J]. 计算机测量与控制 2017, 25(10):198-201,205.
|
|
Li Ziqing. Android malicious code detection method based on function call graph[J]. Computer Measurement and Control, 2017, 25(10):198-201,205.
|