Electronic Science and Technology ›› 2021, Vol. 34 ›› Issue (12): 36-41.doi: 10.16180/j.cnki.issn1007-7820.2021.12.007
Previous Articles Next Articles
ZHU Chengming,WEI Yunbing,JIANG Chengcheng,ZHU Jian'an
Received:
2020-08-06
Online:
2021-12-15
Published:
2021-12-06
Supported by:
CLC Number:
ZHU Chengming,WEI Yunbing,JIANG Chengcheng,ZHU Jian'an. Estimation Model of Wind Power Reserve Capacity Based on PSO-BP Neural Network[J].Electronic Science and Technology, 2021, 34(12): 36-41.
[1] | 于智超, 刘帅, 杜克文. 基于神经网络的风力发电并网控制研究[J]. 电子科技, 2018, 31(8):89-95. |
Yu Zhichao, Liu Shuai, Du Kewen. Study on control of wind power generation grid connection based on neural network[J]. Electronic Science and Technology, 2018, 31(8):89-95. | |
[2] | 冯俊杰, 范学强, 张志飞, 等. 一种改进的风电功率短期组合预测[J]. 电气时代, 2018(11):29-31. |
Feng Junjie, Fan Xueqiang, Zhang Zhifei, et al. An improved short-term combined forecasting of wind power[J]. Electric Age, 2018(11):29-31. | |
[3] | 谢辉煌, 郑荣进, 黄晓生. 趋势外推法在连江县电力负荷预测中的应用[J]. 电气时代, 2017(6):78-80. |
Xie Huihuang, Zheng Rongjin, Huang Xiaosheng. Application of trend extrapolation method in power load forecast in lianjiang county[J]. Electric Age, 2017(6):78-80. | |
[4] | 王斌. 基于时间序列ARIMA模型的电力负荷短期预测分析[J]. 石河子科技, 2019(3):43-47. |
Wang Bin. Analysis of short-term power load forecast based on time series ARIMA model[J]. Shihezi Science and Technology, 2019(3):43-47. | |
[5] | 刘有飞, 汤锦慧, 刘娟, 等. 基于线性回归分析的度夏电网特性研究[J]. 江西电力, 2018, 42(2):2-4. |
Liu Youfei, Tang Jinhui, Liu Juan, et al. Study on the characteristics of summer power grid based on linear regression analysis[J]. Jiangxi Electric Power, 2018, 42(2):2-4. | |
[6] | 戴晖, 李峰, 雷文宝, 等. 改进灰色理论预测模型在分布式配电网中长期负荷预测中的应用[J]. 自动化应用, 2019(7):92-94. |
Dai Hui, Li Feng, Lei Wenbao, et al. Application of improved grey theory forecasting model in long-term load forecasting of distributed distribution network[J]. Automation Application, 2019(7):92-94. | |
[7] | 刘瞻. 人工神经网络方法在化学试验中的应用[J]. 电子科技, 2017, 30(7):69-75. |
Liu Zhan. Artificial neural network method used in chemical experiments[J]. Electronic Science and Technology, 2017, 30(7):69-75. | |
[8] | 吴东剑, 张龙港, 朱大君, 等. 基于随机森林的风力发电预测[J]. 电子世界, 2018(22):20-22. |
Wu Dongjian, Zhang Longgang, Zhu Dajun, et al. Wind power forecasting based on random forest[J]. Electronics World, 2018(22):20-22. | |
[9] | 樊国旗, 蔺红, 程林, 等. 基于K均值模式划分改进模糊聚类与BP神经网络的风力发电预测研究[J]. 智慧电力, 2019, 47(5):38-42. |
Fan Guoqi, Lin Hong, Cheng Lin, et al. Wind power prediction based on K-means pattern classification improved fuzzy clustering and BP neural network[J]. Smart Power, 2019, 47(5):38-42. | |
[10] | 师洪涛, 杨静玲, 丁茂生, 等. 基于小波—BP神经网络的短期风电功率预测方法[J]. 电力系统自动化, 2011, 35(16):44-48. |
Shi Hongtao, Yang Jingling, Ding Maosheng, et al. A short-term wind power prediction method based on wavelet decomposition and BP neural network[J]. Automation of Electric Power Systems, 2011, 35(16):44-48. | |
[11] | 王丹平, 陈之栩, 涂孟夫, 等. 考虑大规模风电接入的备用容量计算[J]. 电力系统自动化, 2012, 36(21):24-28. |
Wang Danping, Chen Zhixu, Tu Mengfu, et al. Reserve capacity calculation considering large-scale wind power integration[J]. Automation of Electric Power Systems, 2012, 36(21):24-28. | |
[12] | Khosravi A, Nahavandi S, Creighton D, et al. Uncertainty quantification for wind farm power generation [C].Brisbane:International Joint Conference on Neural Networks, 2012. |
[13] |
Tewari S, Geyer C J, Mohan N. A statistical model for wind power forecast error and its application to the estimation of penalties in liberalized markets[J]. IEEE Transactions on Power Systems, 2011, 26(4):2031-2039.
doi: 10.1109/TPWRS.2011.2141159 |
[14] | 王铮, 王伟胜, 刘纯, 等. 基于风过程方法的风电功率预测结果不确定性估计[J]. 电网技术, 2013, 37(1):242-247. |
Wang Zheng, Wang Weisheng, Liu Chun, et al. Uncertainty estimation of wind power prediction result based on wind process method[J]. Power System Technology, 2013, 37(1):242-247. | |
[15] | 刘晓楠, 周介圭, 贾宏杰, 等. 基于非参数核密度估计与数值天气预报的风速预测修正方法[J]. 电力自动化设备, 2017, 37(10):15-20. |
Liu Xiaonan, Zhou Jiegui, Jia Hongjie, et al. Correction method of wind speed prediction based on non-parametric kernel density estimation and numerical weather prediction[J]. Electric Power Automation Equipment, 2017, 37(10):15-20. | |
[16] | 韩爽, 刘永前, 杨勇平, 等. 风电场超短期功率预测及不确定性分析[J]. 太阳能学报, 2011, 32(8):1251-1256. |
Han Shuang, Liu Yongqian, Yang Yongping, et al. Ultra-shortterm wind power prediction and uncertainty assessment[J]. Journal of Solar Energy, 2011, 32(8):1251-1256. | |
[17] | Jones L E. Strategies and decision support system for integrating variable energy resources in control centers for reliable grid operations[M]. Columbia:AREVA Federal Services LLC, 2012. |
[18] | 周松林, 茆美琴, 苏建徽. 风电功率短期预测及非参数区间估计[J]. 中国电机工程学报, 2011, 31(25):10-16. |
Zhou Songlin, Mao Meiqin, Su Jianhui. Short-term forecasting of wind power and non-parametric confidence interval estimation[J]. Proceedings of the CSEE, 2011, 31(25):10-16. | |
[19] | 王乐, 余志伟, 文福拴. 基于机会约束规划的最优旋转备用容量确定[J]. 电网技术, 2006, 30(20):14-19. |
Wang Le, Yu Zhiwei, Wen Fushuan. A chance-constrained programming approach to determine requirement of optimal spinning reserve capacity[J]. Power System Technology, 2006, 30(20):14-19. | |
[20] |
Sexton R S, Dorsey R E. Reliable classification using neural networks: a genetic algorithm and backpropagation comparison[J]. Decision Support System, 2000, 30(1):11-22.
doi: 10.1016/S0167-9236(00)00086-5 |
[21] | 周英, 尹邦德, 任铃, 等. 基于BP神经网络的电网短期负荷预测模型研究[J]. 电测与仪表, 2011, 48(2):68-71. |
Zhou Ying, Yin Bangde, Ren Ling, et al. Study of electricity short term load forecast based on BP neural network[J]. Electrical Measurement & Instrumentation, 2011, 48(2):68-71. | |
[22] | Dindorf R, Wos P. Contour error of the 3-DoF hydraulic translational parallel manipulator[J]. Advanced Materials Research, 2014, 87(4):57-62. |
[1] | LIU Jianlong,HAO Zhenghang. Comparative Study of Wind Power System Simulation Based on Back-to-Back Converters [J]. Electronic Science and Technology, 2022, 35(2): 67-73. |
[2] | LI Hui,WANG Yicheng. CNNCIFG-Attention Model for Text Sentiment Classifcation [J]. Electronic Science and Technology, 2022, 35(2): 46-51. |
[3] | JIANG Chengcheng,ZHU Jian'an,ZHU Chengming,WANG Ke,ZHANG Wenjun. Research on EV Modeling in V2G Mode [J]. Electronic Science and Technology, 2022, 35(2): 74-78. |
[4] | CHU Ping,NI Wei. Design of FPGA-Based SqueezeNet Inference Accelerator [J]. Electronic Science and Technology, 2022, 35(2): 20-26. |
[5] | LU Wei,LIU Xiang,XUE Mian. Siamese Network Binocular Stereo Matching Based on Super-Pixel Segmentation [J]. Electronic Science and Technology, 2021, 34(9): 73-78. |
[6] | ZHAN Yinwei,ZHU Baiwan,YANG Zhuo. Research and Application of Vehicle Face Recognition Algorithm [J]. Electronic Science and Technology, 2021, 34(8): 1-7. |
[7] | LIAO Luming,ZHANG Wei. Batch Mixed Training Traffic Sign Recognition Based on Improved VGG16 Network [J]. Electronic Science and Technology, 2021, 34(8): 8-13. |
[8] | SI Mingming,CHEN Wei,HU Chunyan,YIN Zhong. Fundus Blood Vessel Image Segmentation Combining Resnet50 and U-Net [J]. Electronic Science and Technology, 2021, 34(8): 19-24. |
[9] | GU Wei,LI Feifei,CHEN Qiu. Pedestrian Detection Algorithm Based on Multiple Feature Fusion [J]. Electronic Science and Technology, 2021, 34(5): 29-34. |
[10] | MENG Xiaojiao,ZHANG Shiwei,LI Xiaojian,LI Minyue,SONG Bingxin,LU Hongmin. An Evaluation Method of Vehicle-Mounted Communication Equipment Performance Based on BP Neural Network [J]. Electronic Science and Technology, 2021, 34(5): 24-28. |
[11] | ZHANG Shisen,SUN Xiankun,YIN Ling,LI Shixi. Design of Text Title Generation Prototype System Based on Neural Network [J]. Electronic Science and Technology, 2021, 34(5): 35-41. |
[12] | XUE Yongjie,JU Zhiyong. Fish Recognition Algorithm Based on Improved AlexNet [J]. Electronic Science and Technology, 2021, 34(4): 12-17. |
[13] | DOU Zhengli,WANG Yagang. Modeling of Combustion Chamber Temperature Model of Combined Cycle Unit Based on Elman Neural Network [J]. Electronic Science and Technology, 2021, 34(3): 60-64. |
[14] | ZHU Bin,LIU Zilong. Image Classification Method Using Convolutional Neural Network Based on New Initial Module [J]. Electronic Science and Technology, 2021, 34(2): 52-56. |
[15] | ZHOU Xiaobo,ZOU Renling,LU Xuhua,WANG Haibin,ZHANG Junxiang. Research Progress of Surface Electromyography Signal Classifier Based on Artificial Neural Network [J]. Electronic Science and Technology, 2021, 34(2): 62-67. |
|