Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (12): 46-54.doi: 10.16180/j.cnki.issn1007-7820.2023.12.007
Previous Articles Next Articles
HU Tao,JIANG Quan
Received:
2022-07-26
Online:
2023-12-15
Published:
2023-12-05
Supported by:
CLC Number:
HU Tao,JIANG Quan. PID Parameter Tuning Based on Improved Honey Badger Optimization Algorithm[J].Electronic Science and Technology, 2023, 36(12): 46-54.
Table 1.
Statistical results of unimodal benchmark function tests"
函数 | CHBA | HBA | SSA | PSO | WOA | ALO | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | ||
F1 | 4.10×10-212 | 7.60×10-201 | 4.50×10-125 | 2.40×10-124 | 1.68×10-4 | 3.67×10-4 | 2.32×10-3 | 4.47×10-3 | 1.23×10-62 | 6.16×10-62 | 1.52×10-1 | 3.72×10-1 | |
F2 | 3.01×10-99 | 1.65×10-98 | 2.20×10-67 | 7.12×10-67 | 4.13×100 | 3.20×100 | 1.03×10-1 | 1.47×10-1 | 7.25×10-47 | 2.93×10-46 | 9.39×102 | 4.81×103 | |
F3 | 7.00×10-198 | 4.80×10-177 | 1.67×10-86 | 8.90×10-86 | 3.84×103 | 1.70×103 | 1.32×102 | 4.45×101 | 5.72×104 | 1.67×104 | 7.89×103 | 3.14×103 | |
F4 | 8.29×10-98 | 4.49×10-97 | 2.06×10-51 | 1.03×10-50 | 1.75×101 | 4.30×100 | 1.53×100 | 2.96×10-1 | 5.48×101 | 2.75×101 | 2.14×101 | 5.84×100 | |
F5 | 2.50×101 | 1.77×10-1 | 2.54×101 | 1.29×100 | 5.24×102 | 7.20×102 | 1.01×102 | 4.69×101 | 2.84×101 | 3.52×10-1 | 7.29×102 | 6.82×102 | |
F6 | 8.25×10-9 | 5.79×10-9 | 1.50×10-1 | 2.19×10-1 | 2.56×10-4 | 5.21×10-4 | 1.78×10-3 | 1.99×10-3 | 8.52×10-1 | 3.47×10-1 | 6.30×10-2 | 6.6×10-2 | |
F7 | 3.47×10-4 | 2.87×10-4 | 6.62×10-4 | 5.80×10-4 | 2.67×10-1 | 9.40×10-2 | 2.63×10-1 | 1.04×10-1 | 5.01×10-3 | 8.82×10-3 | 5.32×10-1 | 1.60×10-1 | |
结果 | — | 7/0/0 | 7/0/0 | 7/0/0 | 7/0/0 | 7/0/0 |
Table 2.
Statistical results of multimodal benchmark function tests"
函数 | CHBA | HBA | SSA | PSO | WOA | ALO | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | ||
F8 | -1.05×104 | 9.95×102 | -8.60×103 | 6.87×102 | -7.18×103 | 8.20×102 | -4.34×103 | 1.34×103 | -9.72×103 | 1.79×103 | -5.69×103 | 7.34×102 | |
F9 | 0 | 0 | 0 | 0 | 6.42×101 | 2.28×101 | 6.30×101 | 1.76×101 | 0 | 0 | 8.95×101 | 3.02×101 | |
F10 | 8.88×10-16 | 0 | 1.33×100 | 5.06×100 | 3.43×100 | 1.1307 | 7.85×10-1 | 6.47×10-1 | 4.56×10-15 | 3.30×10-15 | 9.63×100 | 3.66×100 | |
F11 | 0 | 0 | 0 | 0 | 5.25×10-2 | 3.33×10-2 | 7.47×10-3 | 9.25×10-3 | 9.09×100 | 4.97×10-2 | 2.47×10-1 | 1.37×10-1 | |
F12 | 6.91×10-3 | 2.63×10-2 | 3.72×10-3 | 3.64×10-3 | 1.04×101 | 4.33×100 | 2.43×10-2 | 8.01×10-2 | 4.23×10-2 | 2.12×10-2 | 1.88×101 | 8.78×100 | |
F13 | 1.19×10-2 | 2.33×10-2 | 7.53×10-1 | 3.16×10-1 | 2.76×101 | 1.63×101 | 9.07×10-3 | 1.13×10-2 | 9.32×10-1 | 3.18×10-1 | 4.89×101 | 1.47×101 | |
结果 | — | 3/3/0 | 6/0/0 | 6/0/0 | 6/0/0 | 6/0/0 |
Table 3.
Statistical results of fixed dimensional multimodal benchmark function tests"
函数 | CHBA | HBA | SSA | PSO | WOA | ALO | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | ||
F14 | 9.98×10-1 | 0 | 9.98×10-1 | 0 | 9.98×10-1 | 2.38×10-16 | 9.98×10-1 | 1.37×10-10 | 2.56×100 | 2.65×100 | 2.13×100 | 2.34×10-1 | |
F15 | 3.26×10-5 | 8.98×10-6 | 3.58×10-3 | 5.32×10-3 | 8.90×10-4 | 2.77×10-5 | 3.25×10-3 | 7.25×10-3 | 5.75×10-5 | 3.81×10-4 | 5.12×10-4 | 1.56×10-4 | |
F16 | -1.03×100 | 5.15×10-16 | -1.03×100 | 1.25×10-14 | -1.03×100 | 1.48×10-8 | -1.03×100 | 7.12×10-16 | -1.03×100 | 5.23×10-7 | -1.03×100 | 2.58×10-12 | |
F17 | 3.97×10-1 | 0 | 3.97×10-1 | 0 | 3.97×10-1 | 7.52×10-15 | 3.97×10-1 | 0 | 3.97×10-1 | 2.99×10-5 | 3.97×10-1 | 1.97×10-13 | |
F18 | 3.00×100 | 2.47×10-15 | 4.8×100 | 6.8501 | 3.00×100 | 3.65×10-13 | 3.00×100 | 1.96×10-15 | 3.00×100 | 1.21×10-4 | 3.00×100 | 9.32×10-13 | |
F19 | -3.86×100 | 2.54×10-15 | -3.75×100 | 2.67×10-1 | -3.86×100 | 2.11×10-7 | -3.86×100 | 2.58×10-15 | -3.84×100 | 3.04×10-2 | -3.86×100 | 5.86×10-12 | |
F20 | -3.27×100 | 6.03×10-2 | -3.17×100 | 3.05×10-1 | -3.24×100 | 7.04×10-2 | -3.26×100 | 6.70×10-2 | -3.21×100 | 1.20×10-1 | -3.26×100 | 6.11×10-2 | |
F21 | -9.55×100 | 2.05×100 | -9.34×100 | 2.49×100 | -7.40×100 | 3.50×100 | -6.89×100 | 3.43×100 | -7.61×100 | 2.49×100 | -5.60×100 | 2.23×100 | |
F22 | -8.88×100 | 3.13×100 | -8.48×100 | 3.30×100 | -8.04×100 | 3.44×100 | -8.16×100 | 3.05×100 | -6.90×100 | 2.92×100 | -6.59×100 | 3.48×100 | |
F23 | -6.56×100 | 4.07×100 | -8.11×100 | 3.51×100 | -8.09×100 | 3.57×100 | -8.34×100 | 3.44×100 | -5.95×100 | 2.92×100 | -5.86×100 | 3.71×100 | |
结果 | — | 7/2/1 | 8/1/1 | 8/1/1 | 9/1/0 | 10/0/0 |
[1] |
Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95(5):51-67.
doi: 10.1016/j.advengsoft.2016.01.008 |
[2] | Ziegler J G, Nichols N B. Optimum settings for automatic controllers[J]. Transactions of American the Society of Mechanical Engineers, 1942, 64(4):759-768. |
[3] | Cohen G H, Coon G A. Theoretical consideration of retarded control[J]. Transactions of American the Society of Mechanical Engineers, 1953, 75(5):827-833. |
[4] | 郝万君, 强文义, 胡林献, 等. 基于改进粒子群算法的PID参数优化与仿真[J]. 控制工程, 2006(5):429-432. |
Hao Wanjun, Qiang Wenyi, Hu Linxian, et al. Optimization and simulation of PID parameters based on improved particle swarm algorithms[J]. Control Engineering of China, 2006(5):429-432. | |
[5] | 曾国辉, 杜涛, 黄勃, 等. 基于蚁狮优化算法分数阶PI的PMSM矢量控制[J]. 电力电子技术, 2021, 55(5):120-123,145. |
Zeng Guohui, Du Tao, Huang Bo, et al. Vector control of PMSM based on ant lion optimization algorithm of fractional-order PI[J]. Power Electronics, 2021, 55(5):120-123,145. | |
[6] | 耿文波, 周子昂. 改进粒子群算法优化的BLDCM调速系统研究[J]. 控制工程, 2019, 26(9):1636-1641. |
Geng Wenbo, Zhou Ziang. Research on improved particle swarm optimization for BLDCM speed control system[J]. Control Engineering of China, 2019, 26(9):1636-1641. | |
[7] |
Hashim F A, Houssein E H, Hussain K, et al. Honey b-adger algorithm:New metaheuristic algorithm for solving optimization problems[J]. Mathematics and Computers in Simulation, 2022, 192(2):84-110.
doi: 10.1016/j.matcom.2021.08.013 |
[8] | Han E, Ghadimi N. Model identification of proton exc-hange membrane fuel cells based on a hybrid convolutional neural network and extreme learning machine optimized by improved honey badger algorithm[J]. Sustainable Energy Technologies and Assessments, 2022, 52(8):102-105. |
[9] | Kapner D J, Cook T S, Adelberger E G, et al. Tests of the gravitational inverse-square law below the dark energy length scale[J]. Physical Review Letters, 2007, 98(2):211-221. |
[10] |
Esmat R, Hossein N, Saeid S. GSA:A gravitational search algorithm[J]. Information Sciences, 2009, 179(13):2232-2248.
doi: 10.1016/j.ins.2009.03.004 |
[11] | 单梁, 强浩, 李军, 等. 基于Tent映射的混沌优化算法[J]. 控制与决策, 2005(2):179-182. |
Shan Liang, Qiang Hao, Li Jun, et al. Chaotic optimization algorithm based on Tent map[J]. Control and Decision, 2005(2):179-182. | |
[12] | 李德毅, 孟海军, 史雪梅. 隶属云和隶属云发生器[J]. 计算机研究与发展, 1995, 32(6):15-20. |
Li Deyi, Meng Haijun, Shi Xuemei. Membership clouds and membership cloud generators[J]. Journal of Computer Research and Development, 1995, 32(6):15-20. | |
[13] |
Mirjalili S, Gandomi A H, Mirjalili S Z, et al. Salp swarm algorithm:A bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114(12):163-191.
doi: 10.1016/j.advengsoft.2017.07.002 |
[14] | Kennedy J, Eberhare R C. Particle swarm optimization[C]. Perth: Proceedings of IEEE International Conference on Neural Network, 1995:1942-1948. |
[15] |
Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95(2):51-67.
doi: 10.1016/j.advengsoft.2016.01.008 |
[16] |
Mirjalili S. The ant lion optimizer[J]. Advances in Engineering Software, 2015, 83(5):80-98.
doi: 10.1016/j.advengsoft.2015.01.010 |
[17] |
Li D Y, Liu C Y, Gan W Y. A new cognitive model:Cloud model[J]. International Journal of Intelligent Systems, 2009, 24(3):357-375.
doi: 10.1002/int.v24:3 |
[18] | 张铸, 张仕杰, 饶盛华, 等. 基于自适应正态云模型的引力樽海鞘群算法[J]. 控制与决策, 2022, 37(2):344-352. |
Zhang Zhu, Zhang Shijie, Rao Shenghua, et al. Gravity salp swarm algorithm based on adaptive normal cloud model[J]. Control and Decision, 2022, 37(2):344-352. | |
[19] | 崔金玲, 吴迪. 基于正态云模型的自适应果蝇优化算法[J]. 河南理工大学学报(自然科学版), 2016, 35(5):697-705. |
Cui Jinling, Wu Di. Adaptive fruit fly optimization algorithm based on normal cloud model[J]. Journal of Henan Polytechnic University(Natural Science), 2016, 35(5):697-705. | |
[20] |
Zhu M, Yang C, Li W. Autotuning algorithm of particle swarm PID parameter based on D-Tent chaotic model[J]. Journal of Systems Engineering and Electronics, 2013, 24(5):828-837.
doi: 10.1109/JSEE.2013.00096 |
[21] | 刘晨旻, 王亚刚. 基于连续空间的萤火虫算法改进[J]. 电子科技, 2022, 35(2):40-45. |
Liu Chenmin, Wang Yagang. Optimization of firefly al-gorithm based on continuous space[J]. Electronic Science and Technology, 2022, 35(2):40-45. | |
[22] | 吴强, 张伟, 杨慧婷, 等. 基于天牛须算法的粒子群算法在PID参数整定上的应用[J]. 电子科技, 2020, 33(6):18-23. |
Wu Qiang, Zhang Wei, Yang Huiting, et al. Application of particle swarm optimization based on beetle antennae search algorithm in PID parameter tuning[J]. Electronic Science and Technology, 2020, 33(6):18-23. |
[1] | DING Xiangxin,ZHANG Wei,WANG Yagang. PID Controller Tuning of Time Delay Integral System Based on Multi Dominant Pole Method [J]. Electronic Science and Technology, 2023, 36(8): 56-64. |
[2] | YUAN Zhenbo,BAI Bo,ZHANG Xiaowei,LUO Liujun,SHANG Tao. Automatic Alignment System for Visible Light Communication Based on Image Processing [J]. Electronic Science and Technology, 2023, 36(6): 8-15. |
[3] | ZHU Mingji,ZHANG Huilin,MA Lixin. Control Strategy of Ammonia Desulfurization Based on Smith Predictive Fuzzy PID [J]. Electronic Science and Technology, 2023, 36(5): 80-87. |
[4] | LU Dongxiang. Research Progress of Node Assignment Optimization Strategy in Road Traffic Network [J]. Electronic Science and Technology, 2023, 36(3): 81-86. |
[5] | XU Bangxian,LIU Xiaobo,HAN Xiangmin,QIU Zhi,TANG Hui,FAN Jinwei. Parameter Optimization Design Method of Coupled Inductor Zeta Converter [J]. Electronic Science and Technology, 2023, 36(1): 88-94. |
[6] | WANG Peiyu,MA Lixin. Research on Permanent Magnet Synchronous Motor Servo System Based on Fuzzy Neural Network [J]. Electronic Science and Technology, 2022, 35(6): 83-88. |
[7] | LI Meng,MA Lixin. Research on Predictive Ammonia Desulfurization Control System [J]. Electronic Science and Technology, 2022, 35(5): 60-65. |
[8] | REN Xinrui,MA Lixin. Research on Main Steam Temperature Control System Based on Fuzzy PID Load Tracking [J]. Electronic Science and Technology, 2021, 34(5): 18-23. |
[9] | HE Zhonglin,ZHOU Ping. Research on Sorting of Retired Lithium Battery Based on Radial Basis Function Neural Network [J]. Electronic Science and Technology, 2021, 34(2): 38-44. |
[10] | LI Lin,XIE Ming,HUANG Song. Design of Modular Parallel Current Sharing Single-Phase Inverter [J]. Electronic Science and Technology, 2021, 34(10): 27-31. |
[11] | GUO Jie,JIN Hai,SHEN Xinge. Optimization Control of Quadrotor UAVs Based on Neural Network PID Algorithm [J]. Electronic Science and Technology, 2021, 34(10): 51-55. |
[12] | WANG Jiaren,WANG Yagang. Research on Complex Control Algorithms for Non-Minimum Phase Systems [J]. Electronic Science and Technology, 2021, 34(1): 55-59. |
[13] | WU Qiang,ZHANG Wei,YANG Huiting,WANG Chaoying. Application of Particle Swarm Optimization Based on Beetle Antennae Search Algorithm in PID Parameter Tuning [J]. Electronic Science and Technology, 2020, 33(6): 18-23. |
[14] | CHEN Mingfang,ZANG Jiaxiu,ZHANG Yongxia. Research on A Multi-area Air-cooled Precise Temperature Control System with High and Low Temperature [J]. Electronic Science and Technology, 2020, 33(6): 46-51. |
[15] | SUN Ruifang,ZHANG Xiaolong,LIANG Wenkai,XIE Xiaoquan. Speed Feedback and Incomplete Differential PID Control of Pneumatic Proportional Position System [J]. Electronic Science and Technology, 2020, 33(4): 65-70. |
|