Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (12): 39-45.doi: 10.16180/j.cnki.issn1007-7820.2023.12.006
Previous Articles Next Articles
SUN Hong,YANG Chen,MO Guangping
Received:
2022-07-07
Online:
2023-12-15
Published:
2023-12-05
Supported by:
CLC Number:
SUN Hong,YANG Chen,MO Guangping. Research on Image Segmentation Algorithm Based on Channel Feature Pyramid[J].Electronic Science and Technology, 2023, 36(12): 39-45.
Table 5.
Cityscapes data set speed test experiments"
模型 | 预训练 | 参数量 /MB | 速度 /frame·s-1 | 评价指标 mIoU/% |
---|---|---|---|---|
DeepLab v2[ | ImageNet | 245.70 | <1 | 68.3 |
PSPNet[ | ImageNet | 250.80 | <1 | 75.1 |
SegNet[ | ImageNet | 29.50 | 15 | 54.2 |
ENet[ | 无 | 0.36 | 76 | 56.1 |
SQNet[ | ImageNet | - | 17 | 57.6 |
ERFNet[ | 无 | 0.36 | 48 | 66.2 |
ICNet[ | ImageNet | 7.60 | 30 | 67.5 |
BiseNet v2[ | ImageNet | 49.00 | 73 | 71.8 |
DABNet[ | 无 | 0.75 | 26 | 68.1 |
本文模型 | 无 | 0.75 | 56 | 75.7 |
[1] | 青晨, 禹晶, 肖创柏, 等. 深度卷积神经网络图像语义分割研究进展[J]. 中国图象图形学报, 2020, 25(6):1069-1090. |
Qing Chen, Yu Jing, Xiao Chuangbai, et al. Deep convolutional neural network for semantic image segmentation[J]. Journal of Image and Graphics, 2020, 25(6):1069-1090. | |
[2] | 陈劲宏, 陈玮, 尹钟. 基于改进ExfuseNet模型的街景语义分割[J]. 电子科技, 2021, 35(6):28-34. |
Chen Jinhong, Chen Wei, Yin Zhong. Semantic segment-ation of streetscape based on improved ExfuseNet[J]. Electronic Science and Technology, 2022, 35(6):28-34. | |
[3] | Sandler M, Howard A, Zhu M, et al. Mobilenetv2:Inverted residuals and linear bottlenecks[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:4510-4520. |
[4] | Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3[C]. Seoul: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019:1314-1324. |
[5] | Zhang X, Zhou X, Lin M, et al. Shufflenet:An extremely efficient convolutional neural network for mobile devices[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:6848-6856. |
[6] | Yu C, Wang J, Peng C, et al. BiseNet:Bilateral segmenta-tion network for real-time semantic segmentation[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018:325-341. |
[7] | Li H, Xiong P, Fan H, et al. DFANet:Deep feature aggreg-ation for real-time segmentation[C]. Long Beach: Proc-eedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019:9522-9531. |
[8] | Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]. Munich: International Conference on Medical Image Computing and Computer-Assisted Intervention,Springer,Cham, 2015:234-241. |
[9] | Fu J, Liu J, Tian H, et al. Dual attention network for scene segmentation[C]. Long Beach: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019:3146-3154. |
[10] | Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]. Honolulu: Proceedings of the IEEE Conferenceon Computer Vision and Pattern Recognition, 2017:2881-2890. |
[11] |
Chen L C, Papandreou G, Kokkinos I, et al. Deeplab:Se-mantic image segmentation with deep convolutional nets,atrous convolution,and fully connected crfs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4):834-848.
doi: 10.1109/TPAMI.2017.2699184 |
[12] | Paszke A, Chaurasia A, Kim S, et al. ENet:A deep neural network architecture for real-time semantic segmentation[C]. Honolulu: Proceedings of the IEEE Conferenceon Computer Vision and Pattern Recognition, 2017:253-263. |
[13] | Mehta S, Rastegari M, Caspi A, et al. ESPNet:Efficient spatial pyramid of dilated convolutions for semantic segmentation[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018:552-568. |
[14] | Zhao H, Qi X, Shen X, et al. LCNet for real-time semantic segmentation on high-resolution images[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018:405-420. |
[15] | Chen L C, Papandreou G, Schroff F, et al. Rethinking a-trous convolution for semantic image segmentation[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:356-368 |
[16] | Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoderwith atrous separable convolution for semantic imagesegmentation[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018:801-818. |
[17] | Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]. Boston: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015:1-9. |
[18] | Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:2818-2826. |
[19] | Ioffe S, Szegedy C. Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]. Lille: International Conference on Machine Learning, 2015:448-456. |
[20] | Chollet F. Xception:Deep learning with depth wise searable convolutions[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Reonition, 2017:1251-1258. |
[21] | Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014, 15(56):3431-3440. |
[22] | Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4,inc-eption-resnet and the impact of residual connections on learning[C]. San Francisco: The Thirty-first AAAI Conference on Artificial Intelligence, 2017:4278-4284. |
[23] | Li G, Yun I, Kim J, et al. DABNet:Depth-wise asymmetric bottleneck for real-time semantic segmentation[C]. Ca-rdiff: British Machine Vision Conference, 2019:259-271. |
[24] |
Badrinarayanan V, Kendall A, Cipolla R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615 pmid: 28060704 |
[25] | Yang M, Yu K, Zhang C, et al. DenseASPP for semantic segmentation in street scenes[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:3684-3692. |
[26] |
Yu C, Gao C, Wang J, et al. BiseNet v2:Bilateral network with guided aggregation for real-time semantic segmentation[J]. International Journal of Computer Vision, 2021, 129(11):3051-3068.
doi: 10.1007/s11263-021-01515-2 |
[27] | Wang P, Chen P, Yuan Y, et al. Understanding convolute-on for semantic segmentation[C]. Lake Tahoe: IEEE Winter Conference on Applications of Computer Vision, 2018:1451-1460. |
[28] | Romera E, Alvarez J M, Bergasa L M, et al. EFRNet:Effi-cient residual factorized convnet for real-time semantic segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(1):253-272. |
[1] | SUN Xi,YU Lianzhi. Image Dehazing Algorithm Based on Residual Attention and Semi-Supervised Learning [J]. Electronic Science and Technology, 2023, 36(9): 50-57. |
[2] | DANG Xiaofang,CAI Xingyu. Transformer-Based Maneuvering Target Tracking [J]. Electronic Science and Technology, 2023, 36(9): 86-92. |
[3] | ZHA Junwei,ZHANG Hongyan. Dynamic Receptive Field Feature Selection Dehazing Network [J]. Electronic Science and Technology, 2023, 36(7): 56-63. |
[4] | SUN Hong,ZHAO Yingzhi. Lightweight Generative Adversarial Networks Based on Multi-Scale Gradient [J]. Electronic Science and Technology, 2023, 36(7): 32-38. |
[5] | ZENG Xinxin,ZHANG Hongyan. A Farmland Parcel Extraction Network Based on Multi-Scale Semantic Information Enhancement [J]. Electronic Science and Technology, 2023, 36(7): 70-74. |
[6] | SHI Jianke,QIAO Meiying,LI Bingfeng,ZHAO Yan. Underwater Occlusion Target Detection Algorithm Based on Attention Mechanism [J]. Electronic Science and Technology, 2023, 36(5): 62-70. |
[7] | LIU Yuwei,CAO Min,FENG Haojia. CNAS Recognition Criteria Automatic Benchmarking System Based on Natural Language Processing [J]. Electronic Science and Technology, 2023, 36(5): 28-33. |
[8] | SUN Hong,ZHANG Yuxiang. Super-Resolution Image Reconstruction Algorithm Based on Multi-Feature Gated Feedback Residual Network [J]. Electronic Science and Technology, 2023, 36(4): 65-70. |
[9] | SUN Hong,LU Meike. Hybrid Recommendation Algorithm Fused with User Behavior Sequence Prediction [J]. Electronic Science and Technology, 2023, 36(4): 84-89. |
[10] | HUANG Yuan,WEI Yunbing,TONG Dongbing,WANG Weigao. Short-Term Photovoltaic Power Prediction Based on VMD and Improved TCN [J]. Electronic Science and Technology, 2023, 36(3): 42-49. |
[11] | ZHAO Jin,LI Feifei. A GAN-Based Lightweight Style Transfer Model for Ink Painting [J]. Electronic Science and Technology, 2023, 36(2): 81-86. |
[12] | ZUO Bin,LI Feifei. An Effective Segmentation Method for COVID-19 CT Image Based on Attention Mechanism and Inf-Net [J]. Electronic Science and Technology, 2023, 36(2): 22-28. |
[13] | YU Guangzeng,ZHANG Qiaoling,ZHOU Yurong. Bearing Fault Diagnosis Based on SC-CNN-BiLSTM [J]. Electronic Science and Technology, 2023, 36(11): 56-65. |
[14] | ZHANG Wuran,LI Feifei. A 3D Object Detection Network Based on Attention Mechanism and Context Awareness [J]. Electronic Science and Technology, 2023, 36(10): 15-23. |
[15] | WANG Ge,YANG Ruihua,XI Wei,ZHAO Jizhong. Deep Completion Based on Multi-Source Data Association Fusion [J]. Electronic Science and Technology, 2023, 36(10): 95-102. |
|