Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (9): 86-92.doi: 10.16180/j.cnki.issn1007-7820.2023.09.013
Previous Articles Next Articles
DANG Xiaofang,CAI Xingyu
Received:
2022-03-03
Online:
2023-09-15
Published:
2023-09-18
Supported by:
CLC Number:
DANG Xiaofang,CAI Xingyu. Transformer-Based Maneuvering Target Tracking[J].Electronic Science and Technology, 2023, 36(9): 86-92.
[1] |
赵广辉, 卓松, 徐晓龙. 基于卡尔曼滤波的多目标跟踪方法[J]. 计算机科学, 2018, 45(8):253-257.
doi: 10.11896/j.issn.1002-137X.2018.08.045 |
Zhao Guanghui, Zhuo Song, Xu Xiaolong. Multi-object tracking algorithm based on Kalman filter[J]. Computer Science, 2018, 45(8):253-257.
doi: 10.11896/j.issn.1002-137X.2018.08.045 |
|
[2] | 王旭, 程婷, 吴小平, 等. 一种基于预测值量测转换的卡尔曼滤波跟踪算法[J]. 电讯技术, 2018, 58(10):1158-1162. |
Wang Xu, Cheng Ting, Wu Xiaoping, et al. A Kalman filter algorithm for target tracking based on predicted position based unbiased converted measurements[J]. Telecommunication Engineering, 2018, 58(10):1158-1162. | |
[3] | 崔龙飞, 张星, 吴晓朝, 等. 基于当前模型自适应改进的航迹跟踪算法[J]. 电子科技, 2017, 30(9):117-121. |
Cui Longfei, Zhang Xing, Wu Xiaochao, et al. An adaptively adjusting improved algorithm of trajectory tracking based on current statistical model[J]. Electronic Science and Technology, 2017, 30(9):117-121. | |
[4] | 杨峰, 张婉莹. 一种多模型贝努利粒子滤波机动目标跟踪算法[J]. 电子与信息学报, 2017, 39(3):634-639. |
Yang Feng, Zhang Wanying. Multiple model Bernoulli particle filter for maneuvering target tracking[J]. Journal of Electronics & Information Technology, 2017, 39(3):634-639. | |
[5] | 张红玉. 基于交互多模型的机动目标跟踪算法研究[D]. 大连: 大连海事大学, 2017:30-48. |
Zhang Hongyu. Research on maneuvering target tracking algorithm based on interactive multi-model[D]. Dalian: Dalian Maritime University, 2017:30-48. | |
[6] | 周昆正. 基于IMM-RDCKF的机动目标跟踪算法[J]. 雷达科学与技术, 2018, 16(6):656-660. |
Zhou Kunzheng. Maneuvering target tracking algorithm based on IMM-RDCKF[J]. Radar Science and Technology, 2018, 16(6):656-660. | |
[7] | 蔺红明, 魏兵卓, 曹政, 等. 一种用于搜索雷达的交互多模型跟踪滤波算法[J]. 无线电工程, 2019, 49(12):1057-1062. |
Lin Hongming, Wei Bingzhuo, Cao Zheng, et al. An interactive multi-model tracking and filtering algorithm for search radars[J]. Radio Engineering, 2019, 49(12):1057-1062. | |
[8] | 赵兵, 王桁. 交互多模型Kalman滤波下的目标跟踪应用研究[J]. 电子测量技术, 2019, 42(11):83-86. |
Zhao Bing, Wang Heng. Research on the application of interactive multi-model Kalman filtering in target tracking[J]. Electronic Measurement Technology, 2019, 42(11):83-86. | |
[9] | Li B, Pang F, Liang C, et al. Improved interactive multiple model filter for maneuvering target tracking[C]. Nanjing: Proceedings of the Thirty-third Chinese Control Conference, 2014:7312-7316. |
[10] | Sherstinsky A. Fundamentals of recurrent neural network and long short-term memory network[J]. Physica D: Nonlinear Phenomena, 2020, 40(4):306-325. |
[11] |
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276 |
[12] | Gao C, Liu H W, Zhou S H, et al. Maneuvering target tracking with recurrent neural networks for radar application[C]. Brisban: International Conference on Radar,IEEE, 2018:1-5. |
[13] | Gao C, Yan J K, Zhou S H, et al. Long short-term memory-based deep recurrent neural networks for target tracking[J]. Information Sciences, 2019, 50(2):279-296. |
[14] |
Liu J X, Wang Z L, Xu M. DeepMTT:A deep learning maneuvering target-tracking algorithm based on bidirectional LSTM network[J]. Information Fusion, 2020, 53(7):289-304.
doi: 10.1016/j.inffus.2019.06.012 |
[15] |
Yu W T, Yu H Y, Du J P, et al. DeepGTT:A general trajectory tracking deep learning algorithm based on dynamic law learning[J]. IET Radar,Sonar & Navigation, 2021, 15(9):1125-1150.
doi: 10.1049/rsn2.v15.9 |
[16] | 刘金铭, 张玉艳, 张碧玲. 基于LSTM-KF的无人机航迹跟踪算法[J]. 北京邮电大学学报, 2022, 45(5):121-128. |
Liu Jinming, Zhang Yuyan, Zhang Biling. Trajectory estimation algorithm for unmanned aerial vehicle based on LSTM-KF[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(5):121-128. | |
[17] | 张宇行, 吕泽均. 基于LSTM模型的航迹跟踪[J]. 信息通信, 2020, 205(1):62-64. |
Zhang Yuxing, Lü Zejun. Track tracking based on LSTM model[J]. Changjiang Information & Communications, 2020, 205(1):62-64. | |
[18] | 赵子瑜. 基于深度LSTM的四维航迹预测方法及应用[D]. 南京: 南京航空航天大学, 2020:28-36. |
Zhao Ziyu. 4D track prediction method and application based on deep LSTM[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020:28-36. | |
[19] | Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30(5):257-270. |
[20] | Liu Jingxian, Wang Zulin, Xu Mai. A Kalman estimation based Rao-Blackwellized particle filtering for radar tracking[J]. IEEE Access, 2017(5):8162-8174. |
[21] | Kazemi M, Goel R, Eghbali S, et al. Time2vec: Learning a vector representation of time[EB/OL].(2019-07-11) [2023-03-01]https://arxiv.org/abs/1907.05321. |
[1] | WEN Yanfei,WANG Wanxiong. Short-Term Power Load Forecasting Based on FA-SVR-LSTM Combined Model [J]. Electronic Science and Technology, 2023, 36(9): 1-7. |
[2] | SUN Xi,YU Lianzhi. Image Dehazing Algorithm Based on Residual Attention and Semi-Supervised Learning [J]. Electronic Science and Technology, 2023, 36(9): 50-57. |
[3] | HU Yongyang,LI Miao,MENG Fankai,ZHANG Feng,MENG Yiwei,SONG Yukun. Structured Compression and Acceleration of Network Based on Tiny-YOLOv3 [J]. Electronic Science and Technology, 2023, 36(8): 43-48. |
[4] | YUE Shengyao,XU Baiqiang,XU Guidong,XU Chenguang,ZHANG Sai. Super-Resolution Imaging of Laminate Debonding Defects via Deconvolutional Neural Network and Ultrasound Guided Waves [J]. Electronic Science and Technology, 2023, 36(8): 7-13. |
[5] | WANG Kejie,TONG Dongbing. Fixed-Time Synchronization for Fractional-Order Memristive Neural Networks with Time-Delays [J]. Electronic Science and Technology, 2023, 36(8): 81-87. |
[6] | SUN Hong,ZHAO Yingzhi. Lightweight Generative Adversarial Networks Based on Multi-Scale Gradient [J]. Electronic Science and Technology, 2023, 36(7): 32-38. |
[7] | OU Jingyi,TIAN Ying,XIANG Xin,SONG Qizhe. Fault Diagnosis of Few Shot Industrial Process Based on Transfer BN-CNN Framework [J]. Electronic Science and Technology, 2023, 36(7): 49-55. |
[8] | ZHA Junwei,ZHANG Hongyan. Dynamic Receptive Field Feature Selection Dehazing Network [J]. Electronic Science and Technology, 2023, 36(7): 56-63. |
[9] | WANG Huimin,BI Jiazhen,SHEN Tuo,ZHANG Xuanxiong. A Research on the Spacing Measurement Between Two Trains Located at A Curved Track by Machine Vision Technology [J]. Electronic Science and Technology, 2023, 36(6): 34-40. |
[10] | LIN Lin,WANG Wanxiong. Short-Term Wind Speed Prediction Based on EMD-GWO-SVR Combined Model [J]. Electronic Science and Technology, 2023, 36(5): 1-8. |
[11] | LIU Yuwei,CAO Min,FENG Haojia. CNAS Recognition Criteria Automatic Benchmarking System Based on Natural Language Processing [J]. Electronic Science and Technology, 2023, 36(5): 28-33. |
[12] | SHI Jianke,QIAO Meiying,LI Bingfeng,ZHAO Yan. Underwater Occlusion Target Detection Algorithm Based on Attention Mechanism [J]. Electronic Science and Technology, 2023, 36(5): 62-70. |
[13] | LUO Ruipeng,FENG Mingke,HUANG Xin,ZOU Renling,LI Dan. A Review of Research on EEG Signal Preprocessing Methods [J]. Electronic Science and Technology, 2023, 36(4): 36-43. |
[14] | CUI Zhuodong,CHEN Wei,YIN Zhong. Helmet Wearing Detection Based on Enhanced Feature Fusion Network [J]. Electronic Science and Technology, 2023, 36(4): 44-51. |
[15] | BAI Yingqi,PALIDAN·Tuerxun . A Scientific Literature Recommendation Method Based on Multi-Task Learning [J]. Electronic Science and Technology, 2023, 36(4): 59-64. |
|