Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (5): 1-8.doi: 10.16180/j.cnki.issn1007-7820.2023.05.001
LIN Lin,WANG Wanxiong
Received:
2021-11-01
Online:
2023-05-15
Published:
2023-05-17
Supported by:
CLC Number:
LIN Lin,WANG Wanxiong. Short-Term Wind Speed Prediction Based on EMD-GWO-SVR Combined Model[J].Electronic Science and Technology, 2023, 36(5): 1-8.
Table 1.
Best parameters searched by PSO、GWO algorithm"
EMD分解 | 最优参数c | 最优参数g | ||
---|---|---|---|---|
PSO-SVR | GWO-SVR | PSO-SVR | GWO-SVR | |
IMF1 | 10.126 8 | 0.133 7 | 3.173 600 0 | 4.551 8 |
IMF2 | 19 235.672 3 | 1.106 8 | 0.007 394 4 | 2.214 5 |
IMF3 | 9.615 9 | 100.000 0 | 0.845 240 0 | 0.276 7 |
IMF4 | 60 019.436 2 | 100.000 0 | 0.332 630 0 | 0.168 9 |
IMF5 | 56 046.445 4 | 100.000 0 | 42.882 600 0 | 0.116 0 |
IMF6 | 86 460.787 7 | 43.348 5 | 73.125 000 0 | 0.041 1 |
IMF7 | 83 306.638 7 | 54.893 0 | 3.815 700 0 | 0.230 6 |
IMF8 | 8 766.171 5 | 77.554 9 | 82.661 500 0 | 47.589 7 |
残差 | 3 9248.052 8 | 18.423 8 | 96.814 600 0 | 0.612 3 |
Table 2.
Prediction results of six models"
时间 | 实际风速 /m·s-1 | 不同模型的预测结果/m·s-1 | |||||
---|---|---|---|---|---|---|---|
BP神经网络 | SVR | PSO-SVR | GWO-SVR | EMD-PSO-SVR | EMD-GWO-SVR | ||
00∶00 | 1.4 | 1.731 4 | 1.822 8 | 1.874 8 | 1.776 1 | 1.290 6 | 1.511 0 |
01∶00 | 2.0 | 1.723 4 | 1.705 6 | 1.821 0 | 1.857 4 | 2.107 5 | 2.030 0 |
02∶00 | 2.1 | 1.987 1 | 2.056 2 | 2.020 5 | 2.108 0 | 1.905 6 | 1.739 0 |
03∶00 | 1.8 | 1.993 4 | 2.139 5 | 2.126 9 | 2.176 1 | 1.600 1 | 1.808 2 |
04∶00 | 1.8 | 1.815 3 | 1.965 5 | 1.982 3 | 2.005 4 | 1.480 9 | 1.894 9 |
05∶00 | 1.3 | 1.819 7 | 1.951 4 | 1.966 5 | 2.002 9 | 1.273 4 | 1.254 6 |
06∶00 | 2.5 | 1.610 4 | 1.756 7 | 1.771 7 | 1.787 7 | 1.752 4 | 2.065 3 |
07∶00 | 1.6 | 2.236 3 | 2.376 0 | 2.378 7 | 2.406 6 | 1.845 3 | 1.561 1 |
08∶00 | 1.8 | 1.958 7 | 2.235 0 | 2.059 0 | 1.996 7 | 1.619 1 | 1.982 8 |
09∶00 | 0.4 | 1.910 3 | 1.977 2 | 2.005 7 | 2.013 1 | 0.071 6 | 0.161 1 |
10∶00 | 3.2 | 1.658 5 | 1.550 4 | 1.706 4 | 1.529 6 | 1.602 9 | 2.394 4 |
11∶00 | 5.2 | 2.615 9 | 2.997 9 | 3.046 2 | 2.968 8 | 3.181 5 | 4.189 8 |
12∶00 | 4.2 | 6.251 2 | 4.391 5 | 4.547 8 | 4.594 2 | 3.841 2 | 4.965 8 |
13∶00 | 5.1 | 3.868 1 | 3.801 1 | 3.880 7 | 4.035 5 | 3.688 2 | 5.232 9 |
14∶00 | 6.1 | 4.081 9 | 4.179 2 | 4.423 2 | 4.388 6 | 4.694 3 | 5.823 4 |
15∶00 | 4.9 | 6.033 8 | 5.244 2 | 5.311 1 | 5.544 1 | 4.701 0 | 5.340 7 |
16∶00 | 5.2 | 4.044 1 | 4.077 8 | 4.137 8 | 4.416 6 | 4.683 0 | 4.946 6 |
17∶00 | 2.8 | 3.686 5 | 4.168 5 | 4.273 5 | 4.328 0 | 3.010 5 | 3.156 4 |
18∶00 | 2.6 | 2.485 7 | 2.433 0 | 2.493 4 | 2.548 3 | 1.852 4 | 2.259 6 |
19∶00 | 2.4 | 1.873 1 | 2.284 1 | 1.979 5 | 2.352 4 | 1.660 6 | 1.992 9 |
20∶00 | 1.8 | 2.213 9 | 2.364 0 | 2.264 0 | 2.319 2 | 1.588 7 | 1.756 4 |
21∶00 | 2.5 | 1.885 9 | 1.960 8 | 1.993 3 | 1.979 0 | 2.103 7 | 2.285 3 |
22∶00 | 1.6 | 2.299 3 | 2.377 2 | 2.392 6 | 2.403 5 | 1.877 6 | 1.587 2 |
23∶00 | 1.7 | 1.832 3 | 2.060 0 | 1.995 5 | 1.947 3 | 1.938 7 | 2.004 0 |
[1] | 毛志强, 毛志芳, 周文. 风力发电影响综述[J]. 电气工程学报, 2010, 5(5):45-46. |
Mao Zhiqiang, Mao Zhifang, Zhou Wen. Review of the impact of wind power[J]. Journal of Electrical Engineering, 2010, 5(5):45-46. | |
[2] |
颜宏文, 卢格宇. CEEMD-WT和CNN在短期风速预测中的应用研究[J]. 计算机工程与应用, 2018, 54(9):224-230.
doi: 10.3778/j.issn.1002-8331.1612-0256 |
Yan Hongwen, Lu Geyu. Application research on complete ensemble empirical mode decomposition,wavelet transform and convolutional neural networks in short-term wind speed forecasting[J]. Computer Engineering and Applications, 2018, 54(9):224-230.
doi: 10.3778/j.issn.1002-8331.1612-0256 |
|
[3] | 李应求, 安勃, 李恒通. 基于NARX及混沌支持向量机的短期风速预测[J]. 电力系统保护与控制, 2019, 47(23):65-73. |
Li Yingqiu, An Bo, Li Hengtong. Short-term wind speed prediction based on NARX and chaos-support vector machine[J]. Power System Protection and Control, 2019, 47(23):65-73. | |
[4] | 林涛, 刘航鹏, 赵参参, 等. 基于SSA-PSO-ANFIS的短期风速预测研究[J]. 太阳能学报, 2021, 42(3):128-134. |
Lin Tao, Liu Hangpeng, Zhao Shenshen, et al. Short-time wind speed prediction based on SSA-PSO-ANFIS[J]. Acta Energiae Solaris Sinica, 2021, 42(3):128-134. | |
[5] | 丁仁强, 周武能, 程航洋, 等. 基于深度学习框架SSA-BiLSTM网络的风速预测[J]. 计算机与数字工程, 2020, 48(11):2578-2583. |
Ding Renqiang, Zhou Wuneng, Cheng Hangyang, et al. A novel method based on SSA-BiLSTM networks under deep learning framework for wind speed forecasting[J]. Computer & Digital Engineering, 2020, 48(11):2578-2583. | |
[6] | 周楚杰. 基于LSTM和TCN混合深度学习的风速短期预测模型[D]. 兰州: 兰州大学, 2019:19-51. |
Zhou Chujie. A novel hybrid deep learning model for short-term wind speed forecasting based on LSTM and TCN[D]. Lanzhou: Lanzhou University, 2019:19-51. | |
[7] | 段新会, 李文鑫. 基于改进粒子群优化神经网络的超短期风速预测[J]. 自动化与仪表, 2021, 36(3):76-80. |
Duan Xinhui, Li Wenxin. Ultra-short-term wind speed prediction based on improved particle swarm neural network algorithm[J]. Automation & Instrumentation, 2021, 36(3):76-80. | |
[8] | 魏炘, 石强, 符文熹, 等. 考虑CEEMDAN样本熵和SVR的短期风速预测[J]. 水电能源科学, 2020, 38(11):207-210. |
Wei Xin, Shi Qiang, Fu Wenxi, et al. Short-time wind s-peed prediction with CEEMDAN sample entropy and SVR[J]. Water Resources and Power, 2020, 38(11):207-210. | |
[9] | 董雁萍. 支持向量机预测模型的构建及其应用[D]. 西安: 西安理工大学, 2010:20-36. |
Dong Yanping. The establishment and application of support vector machine forecasting model.[D]. Xi'an: Xi'an University of Technology, 2010:20-36. | |
[10] |
Dindar A, Ardehali M M, Vakilian M. Integration of wind turbines in distribution systems and development of an adaptive overcurrent relay coordination scheme with considerations for wind speed forecast uncertainty[J]. IET Renewable Power Generation, 2020, 14(15):2983-2992.
doi: 10.1049/rpg2.v14.15 |
[11] | 金吉, 王斌, 喻敏, 等. Lorenz方程优化EMD分解过程的短期风速预测[J]. 太阳能学报, 2021, 42(6):342-348. |
Jin Ji, Wang Bin, Yu Min, et al. Short-term wind speed prediction based on EMD optimized by Lorenz equation[J]. Acta Eergiae Slaris Snica, 2021, 42(6):342-348. | |
[12] | 付晓波. 经验模态分解法理论研究与应用[D]. 太原: 太原理工大学, 2013:15-27. |
Fu Xiaobo. Research on emprical mode decomposition theory and its application[D]. Taiyuan: Taiyuan University of Technology, 2013:15-27. | |
[13] | 张妍, 王东风, 韩璞. 一种风电场短期风速组合预测模型[J]. 太阳能学报, 2017, 38(6):1510-1516. |
Zhang Yan, Wang Dongfeng, Han Pu. Combination forecasting model of short-term wind speed for wind farms[J]. Acta Energiae Solaris Sinica, 2017, 38(6):1510-1516. | |
[14] |
颜宏文, 邹丹. 基于关联规则的PSO-Elman短期风速预测[J]. 计算机工程与应用, 2017, 53(23):261-266.
doi: 10.3778/j.issn.1002-8331.1607-0186 |
Yan Hongwen, Zou Dan. Short-term wind speed foreca-sting based on PAO-Elman optimized by association rule[J]. Computer Engineering and Applications, 2017, 53(23):261-266.
doi: 10.3778/j.issn.1002-8331.1607-0186 |
|
[15] | 赵仕艳, 谢子殿, 丁康康, 等. 粒子群优化BP-PID的矿井提升机调速系统[J]. 电子科技, 2021, 34(1):43-49. |
Zhao Shiyan, Xie Zidian, Ding Kangkang, et al. Particle swarm optimization BP-PID of rotor variable frequency speed in mine hoisting system[J]. Electronic Science and Technology, 2021, 34(1):43-49. | |
[16] | 房乐楠, 何腾鹏, 刘宇红. 一种改进型PSO算法在SVM参数寻优中的应用[J]. 电子科技, 2018, 31(6):17-19. |
Fang Lenan, He Tengpeng, Liu Yuhong. Application of an improved PSO algorithm in SVM parameter optimization[J]. Electronic Science and Technology, 2018, 31(6):17-19. |
[1] | ZHOU Yongchang,HUANG Yayu. Establishment of a Predictive Model of the Process Parameters of Secondary Moisturizing Based on BP Neural Network [J]. Electronic Science and Technology, 2022, 35(9): 79-86. |
[2] | LIU Han,WANG Wanxiong. Short-Term Power Demand Forecasting Based on SARIMA-GS-SVR Combined Model [J]. Electronic Science and Technology, 2022, 35(8): 58-65. |
[3] | ZHANG Chongchong,HUANG Yayu. A GA-BP Neural Network for Predicting the Structure of Leaf Tobacco [J]. Electronic Science and Technology, 2022, 35(6): 35-42. |
[4] | Li HUA,Jian YANG,Tianchen YUAN,Ruigang SONG. Track Disease Diagnosis Method Based on VMD and BP Neural Network [J]. Electronic Science and Technology, 2022, 35(4): 40-46. |
[5] | CHEN Wanfen,WANG Yujia,LIN Weixing. Surrogate Assisted Multi-Objective Particle Swarm Optimization Based on Combined Infill Sampling Criterion [J]. Electronic Science and Technology, 2022, 35(12): 26-34. |
[6] | MENG Xiaojiao,ZHANG Shiwei,LI Xiaojian,LI Minyue,SONG Bingxin,LU Hongmin. An Evaluation Method of Vehicle-Mounted Communication Equipment Performance Based on BP Neural Network [J]. Electronic Science and Technology, 2021, 34(5): 24-28. |
[7] | JIANG Yinfang,HU Huajian,Guo Yongqiang,WU Bo. Experimental Study on Parameters Optimization of Magnetostrictive Sensor Backing Layer [J]. Electronic Science and Technology, 2021, 34(2): 68-73. |
[8] | ZHU Chengming,WEI Yunbing,JIANG Chengcheng,ZHU Jian'an. Estimation Model of Wind Power Reserve Capacity Based on PSO-BP Neural Network [J]. Electronic Science and Technology, 2021, 34(12): 36-41. |
[9] | ZHU Yifeng. Indoor Positioning Algorithm Based on WiFi-BP [J]. Electronic Science and Technology, 2020, 33(8): 74-79. |
[10] | ZHANG Qiukui,YI Yingping,ZHAO Jiran,XING Wei. Application Research of Microstrip Antenna Based on Polystry Dielectric Substrate [J]. Electronic Science and Technology, 2020, 33(4): 6-12. |
[11] | YANG Haizhu,JIANG Zhaoyang,LI Menglong,KANG Le. Parameters Selection for LSSVM Based on Artificial Fish Swarm-Shuffled Frog Jump Algorithms Optimization in Short-Term Load Forecasting [J]. Electronic Science and Technology, 2020, 33(12): 67-74. |
[12] | ZHANG Changqing,YANG Nan. License Plate Character Recognition Technology Based on Hybrid Neural Network [J]. Electronic Science and Technology, 2019, 32(9): 51-54. |
[13] | GUAN Sheng,RUAN Fangming,ZHOU Kui,SU Ming,WANG Heng,DENG Di,LI Jia. Analysis of Discharge Parameters Affected by BP Neural Network Predicting Electrode Velocity [J]. Electronic Science and Technology, 2019, 32(6): 43-48. |
[14] | ZHANG Jinwei,LI Guoping. Economic Operation of Microgrid Considering Operational Risk and Customer Satisfaction [J]. Electronic Science and Technology, 2019, 32(3): 26-31. |
[15] | WU Yankai,ZHANG Wei,MA Yingman,LI Jiayang. Two Degree of Freedom PID Parameter Optimization Based on GA-PSO Fusion Algorithm [J]. Electronic Science and Technology, 2019, 32(10): 54-59. |
|