Electronic Science and Technology ›› 2022, Vol. 35 ›› Issue (12): 26-34.doi: 10.16180/j.cnki.issn1007-7820.2022.12.004
Previous Articles Next Articles
CHEN Wanfen,WANG Yujia,LIN Weixing
Received:
2021-05-06
Online:
2022-12-15
Published:
2022-12-13
Supported by:
CLC Number:
CHEN Wanfen,WANG Yujia,LIN Weixing. Surrogate Assisted Multi-Objective Particle Swarm Optimization Based on Combined Infill Sampling Criterion[J].Electronic Science and Technology, 2022, 35(12): 26-34.
Table 4.
Average values of GD and SP"
测试函数 | M | D | 指标 | NSGAIII | OMOPSO | HE-OMOPSO | HE-OMOPSO-EI | HE-OMOPSO-CIP |
---|---|---|---|---|---|---|---|---|
DTLZ1 | 3 | 7 | GD | 0.781 783 | 1.637 838 | 0.015 461 | 0.013 791 | 0.016 580 |
SP | 1.057 316 | 0.719 976 | 1.012 225 | 0.979 615 | 1.165 889 | |||
DTLZ2 | 3 | 12 | GD | 0.004 032 | 0.003 235 | 0.007 579 | 0.010 306 | 0.020 607 |
SP | 0.077 598 | 0.064 806 | 0.092 176 | 0.083 077 | 0.098 543 | |||
DTLZ3 | 3 | 12 | GD | 4.753 833 | 1.074 708 | 0.061 030 | 0.061 110 | 0.047 881 |
SP | 2.132 415 | 2.581 264 | 3.035 824 | 3.051 903 | 2.937 612 | |||
DTLZ4 | 3 | 12 | GD | 0.033 529 | 0.047 561 | 9.313 025 | 3.448 13 | 1.682 354 |
SP | 0.090 833 | 0.090 203 | 0.127 381 | 0.429 518 | 0.421 106 | |||
DTLZ7 | 3 | 12 | GD | 0.364 110 | 0.450 572 | 0.476 337 | 0.750 161 | 1.530 544 |
SP | 0.124 177 | 0.081 720 | 0.139 025 | 0.263 528 | 0.229 165 |
Table 5.
Standard deviations of GD and SP"
测试函数 | M | D | 指标 | NSGAIII | OMOPSO | HE-OMOPSO | HE-OMOPSO-EI | HE-OMOPSO-CIP |
---|---|---|---|---|---|---|---|---|
DTLZ1 | 3 | 7 | GD | 0.843 610 | 1.491 720 | 0.001 272 | 0.001 554 | 0.001 721 |
SP | 0.311 322 | 0.179 325 | 0.121 373 | 0.117 135 | 0.083 827 | |||
DTLZ2 | 3 | 12 | GD | 0.000 174 | 0.000 115 | 0.000 605 | 0.000 792 | 0.001 627 |
SP | 0.003 854 | 0.005 398 | 0.006 559 | 0.006 725 | 0.005 243 | |||
DTLZ3 | 3 | 12 | GD | 2.392 910 | 6.811 090 | 0.006 446 | 0.004 494 | 0.003 796 |
SP | 0.397 680 | 0.698 996 | 0.172 701 | 0.230 019 | 0.230 019 | |||
DTLZ4 | 3 | 12 | GD | 0.013 921 | 0.011 886 | 3.353 000 | 5.088 000 | 1.342 000 |
SP | 0.026 589 | 0.020 837 | 0.077 574 | 0.193 824 | 0.159 270 | |||
DTLZ7 | 3 | 12 | GD | 0.007 771 | 0.021 923 | 0.207 848 | 0.226 970 | 0.364 183 |
SP | 0.022 571 | 0.007 540 | 0.114 841 | 0.131 889 | 0.058 693 |
Table 6.
Average values of HV"
测试函数 | M | D | NSGAIII | OMOPSO | HE-OMOPSO | HE-OMOPSO-EI | HE-OMOPSO-CIP |
---|---|---|---|---|---|---|---|
DTLZ1 | 3 | 7 | 0.958 385 | 0.937 484 | 0.912 172 | 0.811 930 | 0.907 399 |
DTLZ2 | 3 | 12 | 0.977 874 | 0.960 337 | 0.381 782 | 0.513 731 | 0.850 874 |
DTLZ3 | 3 | 12 | 0.961 162 | 0.970 020 | 0.994 284 | 0.992 462 | 0.985 235 |
DTLZ4 | 3 | 12 | 0.911 239 | 0.957 262 | 0.958 300 | 1.000 000 | 1.000 000 |
DTLZ7 | 3 | 12 | 0.955 206 | 0.949 845 | 1.000 000 | 1.000 000 | 0.980 100 |
Table 7.
Standard deviations of HV"
测试函数 | M | D | NSGAIII | OMOPSO | HE-OMOPSO | HE-OMOPSO-EI | HE-OMOPSO-CIP |
---|---|---|---|---|---|---|---|
DTLZ1 | 3 | 7 | 0.037 100 00 | 0.014 773 0 | 0.006 699 | 0.018 626 000 | 0.009 946 |
DTLZ2 | 3 | 12 | 0.000 083 83 | 0.000 305 0 | 0.016 939 | 0.009 872 000 | 0.008 428 |
DTLZ3 | 3 | 12 | 0.060 860 00 | 0.005 867 0 | 0.001 181 | 0.001 548 000 | 0.002 919 |
DTLZ4 | 3 | 12 | 0.032 718 00 | 0.001 587 0 | 0.044 901 | 0.000 001 654 | 0.000 000 |
DTLZ7 | 3 | 12 | 0.013 348 00 | 0.002 035 1 | 0.004 829 | 0.012 341 000 | 0.036 405 |
[1] |
Jin Y, Wang H, Chugh T, et al. Data-driven evolutionary optimization:An overview and case studies[J]. IEEE Transactions on Evolutionary Computation, 2018, 23(3):442-458.
doi: 10.1109/TEVC.2018.2869001 |
[2] | Lian Y, Liou M S. Multi-objective optimization using coupled response surface model and evolutionary algorithm[J]. Aeronautics and Space Flight, 2005, 43(6):1316-1325. |
[3] | 蓝机满. 基于径向基神经网络的粒子群表面缺陷识别算法[J]. 电子科技, 2019, 32(5):92-95. |
Lan Jiman. Particle swarm optimization surface defect recognition algorithm based on radial basis neural network[J]. Electronic Science and Technology, 2019, 32(5):92-95. | |
[4] |
王丽娟, 丁世飞. 一种粒子群优化的SVM-ELM模型[J]. 计算机科学与探索, 2019, 13(4):657- 665.
doi: 10.3778/j.issn.1673-9418.1806015 |
Wang Lijuan, Ding Shifei. SVM-ELM model based on particle swarm optimization[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(4):657-665.
doi: 10.3778/j.issn.1673-9418.1806015 |
|
[5] | Ginsbourger D, Le Riche R, Carraro L. Kriging is well-suited to parallelize optimization[M]. Heidelberg:Springer, 2010. |
[6] |
Chugh T, Jin Y, Miettinen K, et al. A surrogate assisted reference vector guided evolutionary algorithm for computationally expensive many objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(1):129-142.
doi: 10.1109/TEVC.2016.2622301 |
[7] |
朱苗苗, 潘伟杰, 刘翔, 等. 基于BP神经网络代理模型的交互式遗传算法[J]. 计算机工程与应用, 2020, 56(2):146-151.
doi: 10.3778/j.issn.1002-8331.1810-0089 |
Zhu Miaomiao, Pan Weijie, Liu Xiang, et al. Interactive genetic algorithm based on BP neural network and user cognitive surrogate model[J]. Computer Engineering and Applications, 2020, 56(2):146-151.
doi: 10.3778/j.issn.1002-8331.1810-0089 |
|
[8] |
Forrester A I J, Keane A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1):50-79.
doi: 10.1016/j.paerosci.2008.11.001 |
[9] | Wang X L, Jin Y C, Sebastian S, et al. An adaptive bayesian approach to surrogate assisted evolutionary multi-objective optimization[J]. Information Sciences, 2020, 51(9):317-331. |
[10] | Ruan X R, Li K, Derbel B, et al. Surrogate assisted evolutionary algorithm for medium scale multi-objective optimization problems[C]. New York: Proceedings of the Genetic and Evolutionary Computation Conference, 2020. |
[11] |
Zhou Z, Ong Y S, Nair P B, et al. Combining global and local surrogate models to accelerate evolutionary optimization[J]. IEEE Transactions on Systems,Man,and Cybernetics Part C, 2006, 37(1):66-76.
doi: 10.1109/TSMCC.2005.855506 |
[12] | Han Z H, Zhang K S. Surrogate-based optimization[J]. Real-World Applications of Genetic Algorithms, 2012, 34(3):1-12. |
[13] |
Guo D, Jin Y, Ding J, et al. Heterogeneousensemble-based infill criterion for evolutionary multi-objective optimization of expensive problems[J]. IEEE Transactions on Cybernetics, 2018, 49(3):1012-1025.
doi: 10.1109/TCYB.2018.2794503 |
[14] |
Knowles J. ParEGO:A hybrid algorithm with on-line landscape approximation for expensive multi-objective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(1):50-66.
doi: 10.1109/TEVC.2005.851274 |
[15] |
Zhang Q, Liu W, Tsang E, et al. Expensive multi-objective optimization by MOEA/D with gaussian process model[J]. IEEE Transactions on Evolutionary Computation, 2010, 14(3):456-474.
doi: 10.1109/TEVC.2009.2033671 |
[16] |
Liu B, Zhang Q, Gielen G G E. A gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(2):180-192.
doi: 10.1109/TEVC.2013.2248012 |
[17] | Singh H K, Ray T, Smith W. Surrogate assisted simulated annealing (SASA) for constrained multi-objective optimization[C]. Barcelona: Proceedings of the IEEE Congress on Evolutionary Computation, 2010. |
[18] |
Couckuyt I, Deschrijver D, Dhaene T. Fast calculation of multi-objective probability of improvement and expected improvement criteria for Pareto optimization[J]. Journal of Global Optimization, 2014, 60(3):575-594.
doi: 10.1007/s10898-013-0118-2 |
[19] |
Tian J, Tan Y, Zeng J, et al. Multi-objective infill criterion driven gaussian process-assisted particle swarm optimization of high-dimensional expensive problems[J]. IEEE Transactions on Evolutionary Computation, 2018, 23(3):459-472.
doi: 10.1109/TEVC.2018.2869247 |
[20] |
Fan C D, Hou B, Zheng J H, et al. A surrogate-assisted particle swarm optimization using ensemble learning forexpensive problems with small sample datasets[J]. Applied Soft Computing, 2020, 9(1):1-17.
doi: 10.1016/j.asoc.2008.05.006 |
[21] |
Wang H, Jin Y, Doherty J. Committee-based active learning for surrogate-assisted particle swarm optimization of expensive problems[J]. IEEE Transactions on Cybernetics, 2017, 47(9):2664-2677.
doi: 10.1109/TCYB.2017.2710978 pmid: 28650832 |
[22] | Kennedy J, Eberhart R. Particle swarm optimization[C]. Perth:Proceedings of the ICNN'95-IEEE International Conference on Neural Networks,1995. |
[23] | Krige D G. A statistical approach to some basic mine valuation problems on the Witwatersrand[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1951, 52(6):119-139. |
[24] |
Hardy R L. Multi-quadric equations of topography and other irregular surfaces[J]. Journal of Geophysical Research, 1971, 76(8):1905-1915.
doi: 10.1029/JB076i008p01905 |
[25] |
Park J S. Optimal latin-hypercube designs for computer experiments[J]. Journal of Statistical Planning and Inference, 1994, 39(1):95-111.
doi: 10.1016/0378-3758(94)90115-5 |
[26] | 陈万芬, 王宇嘉, 林炜星. 异构集成代理辅助多目标粒子群优化算法[J]. 计算机工程与应用, 2021, 57(12):77-85. |
Chen Wanfen, Wang Yujia, Lin Weixin. Heterogeneous ensemble surrogate assisted multi objective particle swarm optimization algorithm[J]. Computer Engineering and Applications, 2021, 57(12):77-85. | |
[27] |
Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4):455-492.
doi: 10.1023/A:1008306431147 |
[28] | Deb K, Thiele L, Laumanns M, et al. Scalable multi-objective optimization test problems[C]. Honolulu: Proceedings of the Congress on Evolutionary Computation, 2002. |
[29] | Sierra M R, Coello C A C. Improving PSO based multi objective optimization using crowding, mutation and ε-dominance evolutionary multi criterion optimization[C]. Heidelberg: Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, 2005. |
[30] |
Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based non- dominated sorting approach, part I:Solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(4):577-601.
doi: 10.1109/TEVC.2013.2281535 |
[31] |
Van Veldhuizen D A, Lamont G B. Multi-objective evolutionary algorithm research:A history and analysis[J]. Evolutionary Computation, 1998, 8(2):125-147.
doi: 10.1162/106365600568158 |
[32] | Schott J R. Fault tolerant design using single and multi-criteria genetic algorithm optimization[M]. Cambridge: Massachusetts Institute of Technology, 1995. |
[33] |
While L, Hingston P, Barone L, et al. A faster algorithm for calculating hyper-volume[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(1):29-38.
doi: 10.1109/TEVC.2005.851275 |
[1] | LI Yong. A Kriging Parameters Optimization Algorithm Based on Gradient Method [J]. , 2015, 28(5): 32-. |
|