Electronic Science and Technology ›› 2022, Vol. 35 ›› Issue (12): 35-42.doi: 10.16180/j.cnki.issn1007-7820.2022.12.005
Previous Articles Next Articles
YUAN Ziang,NI Wei,RAN Jingnan
Received:
2021-05-25
Online:
2022-12-15
Published:
2022-12-13
Supported by:
CLC Number:
YUAN Ziang,NI Wei,RAN Jingnan. Reconfigurable Convolutional Neural Network Accelerator Based on Winograd Algorithm[J].Electronic Science and Technology, 2022, 35(12): 35-42.
Table 3.
Performance comparison of accelerators"
文献[17] | 文献[18] | 文献[19] | 本文 | |
---|---|---|---|---|
网络架构 | VGG-16 | VGG-16 | VGG-16 | VGG-9 |
FPGA芯片 | Stratix V | Intel QPI FPGA | Zynq XC7Z045 | Virtex6 240T |
频率 | 120 MHz | 200 MHz | 150 MHz | 130 MHz |
吞吐率[ | 117.8 GOPS | 124.0 GFLOPS | 137.0 GOPS | 192.0 GFLOPS |
DSP | 727 | 224 | 780 | 508 |
吞吐率/Dsp | 0.162 | 0.553 | 0.175 | 0.378 |
[1] | 何宜鸿, 李彦锋, 黄树恺, 等. 基于深度卷积神经网络的自适应图像去雾算法[J]. 电子科技, 2020, 33(8):70-73. |
He Yihong, Li Yanfeng, Huang Shukai, et al. Adaptive image dehazing algorithm based on deep convolutional neural network[J]. Electronic Science and Technology, 2020, 33(8):70-73. | |
[2] | 秦兴, 高晓琪, 陈滨. 基于压缩卷积神经网络的图像超分辨率算法[J]. 电子科技, 2020, 33(5):1-8. |
Qin Xing, Gao Xiaoqi, Chen Bin. Image super-resolution algorithm based on squeezenet convolution neural network[J]. Electronic Science and Technology, 2020, 33(5):1-8. | |
[3] | Hoel C J, Wolff K, Laine L. Automated speed and lane change decision making using deep reinforcement learning[C]. Maui: Proceedings of the Twenty-first International Conference on Intelligent Transportation Systems, 2018. |
[4] | Zhang S, Peng H, Nageshrao S, et al. Discretionary lane change decision making using reinforcement learning with model-based exploration[C]. Boca Raton: Proceedings of the Eighteenth IEEE International Conference On Machine Learning And Applications, 2019. |
[5] | 卢丽强, 郑思泽, 肖倾城, 等. 面向卷积神经网络的FPGA设计[J]. 中国科学:信息科学, 2019, 49(3):277-294. |
Lu Liqiang, Zheng Size, Xiao Qingcheng, et al. Accelerating convolutional neural networks on FPGAs[J]. Scientia Sinica:Informations, 2019, 49(3): 277-294. | |
[6] | Alwani M, Chen H, Ferdman M, et al. Fused-layer CNN accelerators[C]. Taipei: Proceedings of the Forty-ninth Annual IEEE/ACM International Symposium on Microarchitecture, 2016. |
[7] | Kim S K, McAfee L C, Mcmahon P L, et al. A highly scalable restricted boltzmann machine FPGA implementation[C]. Prague: Proceedings of the International Conference on Field Programmable Logic and Applications, 2009. |
[8] | Lavin A, Gray S. Fast algorithms for convolutional neural networks[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. |
[9] | 訾晶, 张旭欣, 王钰, 等. 基于FPGA的可配置神经网络硬件设计[J]. 传感器与微系统, 2020, 39(12):92-95. |
Zi Jing, Zhang Xuxin, Wang Yu, et al. Hardware design of configurable neural network based on FPGA[J]. Transducer and Microsystem Technologies, 2020, 39(12):92-95. | |
[10] | 左国渭, 应三丛. FPGA的可配置卷积运算单元的设计与实现[J]. 单片机与嵌入式系统应用, 2020, 20(11):54-58. |
Zuo Guowei, Ying Sancong. Design and implementation of configurable convolution operation unit based on FPGA[J]. Microcontrollers & Embedded Systems, 2020, 20(11):54-58. | |
[11] | Gu J, Wang Z, Kuen J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 7(7):354-377. |
[12] | Phan H, Hertel L, Maass M, et al. Robust audio event recognition with 1-max pooling convolutional neural networks[C]. Beijing: Proceedings of the Seventeenth Annual Conference of the International Speech Communication Association, 2016. |
[13] |
Girones R G, Palero R C, Boluda J C, et al. FPGA implementation of a pipeflned on-line backpropagation[J]. Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 2005, 40(2):189-213.
doi: 10.1007/s11265-005-4961-3 |
[14] |
Le Cun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
doi: 10.1109/5.726791 |
[15] | 张占军, 彭艳兵, 程光. 基于CIFAR-10的图像分类模型优化[J]. 计算机应用与软件, 2018, 35(3):177-181. |
Zhang Zhanjun, Peng Yanbing, Cheng Guang. The optimization of image categorization model based on CIFAR-10[J]. Computer Applications and Software, 2018, 35(3):177-181. | |
[16] | Molchanov P, Tyree S, Karras T, et al. Pruning convolutional neural networks for resource efficient transfer learning[C]. San Juan: Proceedings of the International Conference on Learning Representations, 2016. |
[17] | Suda N, Chandra V, Dasika G, et al. Throughput-optimized OpenCL-based FPGA accelerator for large-scale convolutional neural networks[C]. Monterey: Proceedings of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2016. |
[18] | Zhang C, Prasanna V. Frequency domain acceleration of convolutional neural networks on CPU-FPGA shared memory system[C]. Monterey: Proceedings of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2017. |
[19] | Qiu J T, Wang J, Yao S, et al. Going deeper with embedded FPGA platform for convolutional neural network[C]. Monterey: Proceedings of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2016. |
[1] | ZHANG Xuan,ZHANG Duoli,SONG Yukun. Optimization of the Internal Memory Architecture of Heterogeneous Multi-Core SoC Processors [J]. Electronic Science and Technology, 2022, 35(9): 44-51. |
[2] | CHENG Biqian,LIU Guangzhu,XIAO Hao. Improved Montgomery Modular Multiplication Algorithm and FPGA Implementation [J]. Electronic Science and Technology, 2022, 35(7): 58-63. |
[3] | ZHANG Fengyin,GAO Bo,JI Yawei. Multi-Task Traffic Management Algorithm Based on FPGA [J]. Electronic Science and Technology, 2022, 35(12): 43-48. |
[4] | YUAN Qingqing,HU Xu,LIU Zhiyong,MA Ting,JIANG Quan. Servo Control for the Dual Three-Phase Permanent Magnet Synchronous Motor Based on FPGA [J]. Electronic Science and Technology, 2022, 35(12): 49-56. |
[5] | WANG Chunhua,LI Bin,DU Gaoming,LI Zhenmin. Design and Implement of a High-Performance RLWE Cryptoprocessor [J]. Electronic Science and Technology, 2022, 35(11): 13-20. |
[6] | CHEN Wenjie,SONG Yukun,ZHANG Duoli. Design of Matrix Decomposer Based on Improved QR Algorithm [J]. Electronic Science and Technology, 2022, 35(11): 21-28. |
[7] | CAO Jiming,CHONG Yuhua,MEI Li,ZHU Yupeng,DUAN Zongming. Reconfigurable Radar System Enabled by Microwave Photonics Technology [J]. Electronic Science and Technology, 2021, 34(9): 36-40. |
[8] | YAN Zijie,WANG Jingmei,CHEN Zhuo,LIU Yu. Implementation of Software Programmable FPGA Network Measurement Engine Technology [J]. Electronic Science and Technology, 2021, 34(2): 27-32. |
[9] | SHI Weizhong,CAO Weiwei,FAN Yanming,DONG Jiajun,CHEN Shu,XIAO Hao. FPGA-Based Real-Time Edge Detection and its Implementation for Deep-Space Images [J]. Electronic Science and Technology, 2020, 33(5): 45-49. |
[10] | XIE Zhixuan,YAO Hongbing,FAN Ning,CHEN Feng. Connected Domain Label Detection Algorithm for Multi-target Lens [J]. Electronic Science and Technology, 2020, 33(4): 50-54. |
[11] | ZHAO Nengwu,LU Hongmin,XU Tao,HU Kuan,HE Chuanxia,MENG Xiaojiao. Design of Signal Source for Perimeter Intrusion Detection System Based on AD9910 [J]. Electronic Science and Technology, 2020, 33(1): 1-5. |
[12] | DUAN Tie,HUANG Yan,WANG Yang. Reconfiguration Design of Digital PLL in Carrier Synchronous [J]. Electronic Science and Technology, 2019, 32(8): 41-45. |
[13] | LUO Ying,WU Qiang,QIN Yun. The Least Mean Square Ultrasonic Beamforming Algorithm Based on GSC [J]. Electronic Science and Technology, 2019, 32(2): 37-41. |
[14] | WANG Jiamin,YANG Qinghui,ZHANG Huaiwu. 9 kHz1.4 GHz High Precision Fast Random Frequency Hopping DDS Frequency Synthesizer [J]. Electronic Science and Technology, 2019, 32(12): 27-32. |
[15] | HE Kai, LIANG Bei, YANG Fashun. Design of Calculating Image Coordinates of Feature Point Based on Vivado HLS [J]. , 2018, 31(4): 87-. |
|