Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (11): 56-65.doi: 10.16180/j.cnki.issn1007-7820.2023.11.009
Previous Articles Next Articles
YU Guangzeng,ZHANG Qiaoling,ZHOU Yurong
Received:
2022-07-01
Online:
2023-11-15
Published:
2023-11-20
Supported by:
CLC Number:
YU Guangzeng,ZHANG Qiaoling,ZHOU Yurong. Bearing Fault Diagnosis Based on SC-CNN-BiLSTM[J].Electronic Science and Technology, 2023, 36(11): 56-65.
Table 1.
Specific parameters of model structure"
编号 | 网络层 | 输出维度 |
---|---|---|
1 | Input Layer | (32, 1, 224, 224) |
2 | Conv2D | (32, 32, 224, 224) |
3 | MaxPooling2D | (32, 32, 112, 112) |
4 | Conv2D | (32, 64, 112, 112) |
5 | MaxPooling2D | (32, 64, 56, 56) |
6 | 软阈值注意力模块 | (32, 64, 56, 56) |
7 | Flatten | (32, 200 704) |
8 | Linear | (32, 64) |
9 | Flatten | (32, 64, 3 136) |
10 | Bidirectional (LSTM) | (32, 64) |
11 | Add | (32, 64) |
12 | Dropout | (32, 64) |
13 | Linear | (32, 256) |
14 | Dropout | (32, 256) |
15 | Linear | (32, 6) |
[1] | 张雪英, 栾忠权, 刘秀丽. 基于深度学习的滚动轴承故障诊断研究综述[J]. 设备管理与维修, 2017, 37(18):130-133. |
Zhang Xueying, Luan Zhongquan, Liu Xiuli. Summary of research on fault diagnosis of rolling bearing based on deep learning[J]. Plant Maintenance Engineering, 2017, 37 (18):130-133. | |
[2] |
Boudiaf A, Moussaoui A, Dahane A, et al. A comparative study of various methods of bearing faults diagnosis using the Case Western Reserve University data[J]. Journal of Failure Analysis and Prevention, 2016, 16(2):271-284.
doi: 10.1007/s11668-016-0080-7 |
[3] | 沙美妤, 刘利国. 基于振动信号的轴承故障诊断技术综述[J]. 轴承, 2015(9):59-63. |
Sha Meiyu, Liu Liguo. Review on fault diagnosis technology for bearings based on vibration signal[J]. Bearing, 2015(9):59-63. | |
[4] | 王兴龙, 郑近德, 潘海洋, 等. 基于MED与自相关谱峭度图的滚动轴承故障诊断方法[J]. 振动与冲击, 2020, 39(18):118-124. |
Wang Xinglong, Zheng Jinde, Pan Haiyang, et al. Fault diagnosis method for rolling bearings based on minimum entropy deconvolution and autograms[J]. Journal of Vibration and Shock, 2020, 39(18):118-124. | |
[5] | 詹瀛鱼, 程良伦, 王涛. 解相关多频率经验模态分解的故障诊断性能优化方法[J]. 振动与冲击, 2020, 39(1):115-122. |
Zhan Yingyu, Cheng Lianglun, Wang Tao. Fault diagnosis performance optimization method based on decorrelation multi-frequency EMD[J]. Journal of Vibration and Shock, 2020, 39(1):115-122. | |
[6] |
Wang W J, McFadden P D. Application of wavelets togearbox vibration signals for fault detection[J]. Journal of Sound and Vibration, 1996, 192(5):927-939.
doi: 10.1006/jsvi.1996.0226 |
[7] | 李恒, 张氢, 秦仙蓉, 等. 基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J]. 振动与冲击, 2018, 37(19):124-131. |
Li Heng, Zhang Qing, Qin Xianrong, et al. Fault diagnosismethod for rolling bearings based on short-time Fourier transform and convolution neural network[J]. Journal of Vibration and Shock, 2018, 37(19):124-131. | |
[8] | 王恒迪, 邓四二, 杨建玺, 等. 基于参数优化变分模态分解的滚动轴承早期故障诊断[J]. 振动与冲击, 2020, 39(23):38-46. |
Wang Hengdi, Deng Sier, Yang Jianxi, et al. Incipient fault diagnosis of rolling bearing based on VMD with parameters optimized[J]. Journal of Vibration and Shock, 2020, 39(23):38-46. | |
[9] | 郑圆, 胡建中, 贾民平, 等. 一种基于参数优化变分模态分解的滚动轴承故障特征提取方法[J]. 振动与冲击, 2020, 39(21):195-202. |
Zheng Yuan, Hu Jianzhong, Jia Minping, et al. A method for rolling bearing fault feature extraction based on parametric optimization VMD[J]. Journal of Vibration and Shock, 2020, 39(21):195-202. | |
[10] | 王奉涛, 薛宇航, 王雷, 等. 基于流形学习的滚动轴承故障盲源分离方法[J]. 振动、测试与诊断, 2020, 40(1):43-47. |
Wang Fengtao, Xue Yuhang, Wang Lei, et al. Blind source separation method for rolling bearing faults based on manifold learning[J]. Journal of Vibration,Measurement & Diagnosis, 2020, 40(1):43-47. | |
[11] | 刘秀丽, 徐小力, 吴国新, 等. 基于变分模态分解的故障弱信息提取方法[J]. 华中科技大学学报(自然科学版), 2020, 48(7):1-6. |
Liu Xiuli, Xu Xiaoli, Wu Guoxin, et al. Extraction method of weak fault information based on variational mode decomposition[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2020, 48(7):1-6. | |
[12] |
Bi F, Li X, Liu C, et al. Knock detection based on the optimized variational mode decomposition[J]. Measurement, 2019, 140(7):1-13.
doi: 10.1016/j.measurement.2019.03.042 |
[13] |
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
doi: 10.1126/science.1127647 pmid: 16873662 |
[14] | 邓佳林, 邹益胜, 张笑璐, 等. 一种改进CNN在轴承故障诊断中的应用[J]. 现代制造工程, 2020, 41(4):142-147. |
Deng Jialin, Zou Yisheng, Zhang Xiaolu, et al. Application of an improved CNN in fault diagnosis of bearings[J]. Modern Manufacturing Engineering, 2020, 41(4):142-147. | |
[15] | 赵小强, 张青青. 改进Alexnet的滚动轴承变工况故障诊断方法[J]. 振动、测试与诊断, 2020, 40(3):472-480. |
Zhao Xiaoqiang, Zhang Qingqing. Improved Alexnet based fault diagnosis method for rolling bearing undervariable conditions[J]. Journal of Vibration,Measurement & Diagnosis, 2020, 40(3):472-480. | |
[16] | 肖雄, 王健翔, 张勇军, 等. 一种用于轴承故障诊断的二维卷积神经网络优化方法[J]. 中国电机工程学报, 2019, 39(15):4558-4568. |
Xiao Xiong, Wang Jianxiang, Zhang Yongjun, et al. A two-dimensional convolutional neural network optimization method for bearing fault diagnosis[J]. Proceedings of the CSEE, 2019, 39(15):4558-4568. | |
[17] | 史光宇, 徐健, 杨强. 基于卷积神经网络的风电机组轴承机械故障智能诊断方法[J]. 华北电力大学学报(自然科学版), 2020, 47(4):71-79. |
Shi Guangyu, Xu Jian, Yang Qiang. Intelligent fault diagnosis on wind turbine bearing based on convolutional neural network[J]. Journal of North China Electric Power University(Natural Science Edition), 2020, 47(4):71-79. | |
[18] | 刘炳集, 熊邦书, 欧巧凤, 等. 基于时频图和CNN的滚动轴承故障诊断[J]. 南昌航空大学学报(自然科学版), 2018, 32(2):86-91. |
Liu Bingji, Xiong Bangshu, Ou Qiaofeng, et al. Fault diagnosis of rolling bearing based on time-frequency representations and CNN[J]. Journal of Nanchang Hangkong University(Natural Sciences), 2018, 32(2):86-91. | |
[19] | 范宇雪, 王江文, 梅桂明, 等. 基于Bi-LSTM的小样本滚动轴承故障诊断方法研究[J]. 噪声与振动控制, 2020, 40(4):103-108. |
Fan Yuxue, Wang Jiangwen, Mei Guiming, et al. Rolling bearing fault diagnosis method based on Bi-LSTM under less samples condition[J]. Noise and Vibration Control, 2020, 40(4):103-108. | |
[20] |
Wang J, Wang D, Wang S, et al. Fault diagnosis of bearings based on multi-sensor information fusion and 2D convolutional neural network[J]. IEEE Access, 2021, 9(7):23717-23725.
doi: 10.1109/Access.6287639 |
[21] | 张龙, 甄灿壮, 熊国良, 等. 基于深度时频特征的机车轴承故障诊断[J]. 交通运输工程学报, 2021, 21(6):247-258. |
Zhang Long, Zhen Canzhuang, Xiong Guoliang, et al. Locomotive bearing fault diagnosis based on deep time-frequency features[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6):247-258. | |
[22] | Xue F, Zhang W, Xue F, et al. A novel intelligent fault diagnosis method of rolling bearing based on two-stream feature fusion convolutional neural network[J]. Measurement, 2021, 176(10):109-226. |
[23] | 闫书豪, 乔美英. 基于一维WConv-BiLSTM的轴承故障诊断算法[J]. 电子科技, 2021, 34(4):75-82. |
Yan Shuhao, Qiao Meiying. Bearing fault diagnosis algorithm based on one-dimensional WConv-BiLSTM[J]. Electronic Science and Technology, 2021, 34(4):75-82. | |
[24] | 张训杰, 张敏, 李贤均. 基于二维图像和CNN-BiGRU网络的滚动轴承故障模式识别[J]. 振动与冲击, 2021, 40(23):194-201. |
Zhang Xunjie, Zhang Min, Li Xianjun. Rolling bearing fault mode recognition based on 2D image and CNN-BiGRU[J]. Journal of Vibration and Shock, 2021, 40(23):194-201. | |
[25] | Bechhoefer E. Condition based maintenance fault database for testing of diagnostic and prognostics algorithms[EB/OL].(2020-02-27)[2021-11-15]https://mfpt.org/fault-data-sets/. |
[26] | Woo S, Park J, Lee J, et al. CBAM:Convolutional block attention module[C]. Munich: European Conference on Computer Vision, 2008:3-19. |
[27] |
Zhao M, Zhong S, Fu X, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7):4681-4690.
doi: 10.1109/TII.9424 |
[1] | Bin ,WANG Sen. Visual Detection of Structural Cracks Using Depth Deformable Contour ModelLAI [J]. Electronic Science and Technology, 2023, 36(9): 35-40. |
[2] | DANG Xiaofang,CAI Xingyu. Transformer-Based Maneuvering Target Tracking [J]. Electronic Science and Technology, 2023, 36(9): 86-92. |
[3] | SUN Xi,YU Lianzhi. Image Dehazing Algorithm Based on Residual Attention and Semi-Supervised Learning [J]. Electronic Science and Technology, 2023, 36(9): 50-57. |
[4] | YUE Shengyao,XU Baiqiang,XU Guidong,XU Chenguang,ZHANG Sai. Super-Resolution Imaging of Laminate Debonding Defects via Deconvolutional Neural Network and Ultrasound Guided Waves [J]. Electronic Science and Technology, 2023, 36(8): 7-13. |
[5] | ZHA Junwei,ZHANG Hongyan. Dynamic Receptive Field Feature Selection Dehazing Network [J]. Electronic Science and Technology, 2023, 36(7): 56-63. |
[6] | SUN Hong,ZHAO Yingzhi. Lightweight Generative Adversarial Networks Based on Multi-Scale Gradient [J]. Electronic Science and Technology, 2023, 36(7): 32-38. |
[7] | OU Jingyi,TIAN Ying,XIANG Xin,SONG Qizhe. Fault Diagnosis of Few Shot Industrial Process Based on Transfer BN-CNN Framework [J]. Electronic Science and Technology, 2023, 36(7): 49-55. |
[8] | ZENG Xinxin,ZHANG Hongyan. A Farmland Parcel Extraction Network Based on Multi-Scale Semantic Information Enhancement [J]. Electronic Science and Technology, 2023, 36(7): 70-74. |
[9] | LI Keran,CHEN Sheng,KE Panpan. A Method of Facial Mask Segmentation Based on CA-Net [J]. Electronic Science and Technology, 2023, 36(6): 64-71. |
[10] | SHI Jianke,QIAO Meiying,LI Bingfeng,ZHAO Yan. Underwater Occlusion Target Detection Algorithm Based on Attention Mechanism [J]. Electronic Science and Technology, 2023, 36(5): 62-70. |
[11] | LIU Yuwei,CAO Min,FENG Haojia. CNAS Recognition Criteria Automatic Benchmarking System Based on Natural Language Processing [J]. Electronic Science and Technology, 2023, 36(5): 28-33. |
[12] | ZHENG Yuheng,FU Dongxiang. UAV Detection Based on Slim-YOLOv4 with Embedded Device [J]. Electronic Science and Technology, 2023, 36(5): 55-61. |
[13] | CUI Zhuodong,CHEN Wei,YIN Zhong. Helmet Wearing Detection Based on Enhanced Feature Fusion Network [J]. Electronic Science and Technology, 2023, 36(4): 44-51. |
[14] | TANG Zheng,ZHANG Huilin,MA Lixin,LIU Jinzhi,WANG Hao. Identification of Foreign Objects on Transmission Lines Using Lightweight Network Algorithm [J]. Electronic Science and Technology, 2023, 36(4): 71-77. |
[15] | BAI Yingqi,PALIDAN·Tuerxun . A Scientific Literature Recommendation Method Based on Multi-Task Learning [J]. Electronic Science and Technology, 2023, 36(4): 59-64. |
|