Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (11): 19-27.doi: 10.16180/j.cnki.issn1007-7820.2023.11.004
Previous Articles Next Articles
WANG Qiao,HU Chunyan,LI Feifei
Received:
2022-05-24
Online:
2023-11-15
Published:
2023-11-20
Supported by:
CLC Number:
WANG Qiao,HU Chunyan,LI Feifei. Scene Recognition Algorithm Based on Deep Transfer Learning and Multi-Scale Feature Fusion[J].Electronic Science and Technology, 2023, 36(11): 19-27.
[1] |
Le Cun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
doi: 10.1109/5.726791 |
[2] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
doi: 10.1145/3065386 |
[3] | Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]. Boston: IEEE Conference on Computer Vision and Pattern Recognition, 2015:1-9. |
[4] | Muhammad U, Wang W, Chattha S P, et al. Pre-trained VGGNet architecture for remote-sensing image scene classification[C]. Beijing: The Twenty-fourth International Conference on Pattern Recognition, 2018:1622-1627. |
[5] | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Las Vegas: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778. |
[6] | Herranz L, Jiang S, Li X. Scene recognition with CNNs:objects,scales and dataset bias[C]. Las Vegas: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016:571-579. |
[7] | Chen L, Bo K, Lee F, et al. Advanced feature fusion algorithm based on multiple convolutional neural network for scene recognition[J]. Computer Modeling in Engineering & Sciences, 2020, 122(2):505-523. |
[8] | Zhao Z, Larson M. From volcano to toyshop:Adaptive discriminative region discovery for scene recognition[C]. New York: Proceedings of the Twenty-sixth ACM International Conference on Multimedia, 2018:1760-1768. |
[9] | Liu Y, Chen Q, Chen W, et al. Dictionary learning inspired deep network for scene recognition[C]. New Orleans: The Thirty-second AAAI Conference on Artificial Intelligence, 2018:7178-7185. |
[10] | 谢林, 李菲菲, 陈虬. 基于稀疏自动编码机的场景识别算法[J]. 电子科技, 2019, 32(1):38-41. |
Xie Lin, Li Feifei, Chen Qiu. Scene recognition algorithm based on sparse autoencoder[J]. Electronic Science and Technology, 2019, 32(1):38-41. | |
[11] | 缪冉, 李菲菲, 陈虬. 基于卷积神经网络与多尺度空间编码的场景识别方法[J]. 电子科技, 2020, 33(12):1-7. |
Miao Ran, Li Feifei, Chen Qiu. Scene recognition algorithm based on convolutional neural networks and multi-scale space encoding[J]. Electronic Science and Technology, 2020, 33(12):1-7. | |
[12] |
Cheng X, Lu J, Feng J, et al. Scene recognition with objectness[J]. Pattern Recognition, 2018, 74(9):474-487.
doi: 10.1016/j.patcog.2017.09.025 |
[13] |
Pan Y, Xia Y, Shen D. Foreground fisher vector:Encoding class-relevant foreground to improve image classification[J]. IEEE Transactions on Image Processing, 2019, 28(10):4716-4729.
doi: 10.1109/TIP.83 |
[14] | Jégou H, Douze M, Schmid C, et al. Aggregating local descriptors into a compact image representation[C]. San Francisco: Computer Vision and Pattern Recognition, 2010:3304-3311. |
[15] |
Wang Z, Wang L, Wang Y, et al. Weakly supervised patchnets:Describing and aggregating local patches for scene recognition[J]. IEEE Transactions on Image Processing, 2017, 26(4):2028-2041.
doi: 10.1109/TIP.2017.2666739 pmid: 28207394 |
[16] | Pan S J, Yang Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22(10):345-1359. |
[17] |
Zhuang F, Qi Z, Duan K, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2020, 109(1):43-76.
doi: 10.1109/PROC.5 |
[18] | 李新叶, 龙慎鹏, 朱婧. 基于深度神经网络的少样本学习综述[J]. 计算机应用研究, 2020, 37(8):2241-2247. |
Li Xinye, Long Shenpeng, Zhu Jing. Survey of few-shot learning based on deep neural network[J]. Application Research of Computers, 2020, 37(8):2241-2247. | |
[19] |
Yang S, Lee F F, Miao R. et al. RS-CapsNet:An advanced capsule network[J]. IEEE Access, 2020, 8(10):85007-85018.
doi: 10.1109/Access.6287639 |
[20] | Li T W, Lee G C. Performance analysis of fine-tune transferred deep learning[C]. Yunlin: IEEE the Third Eurasia Conference on IOT,Communication and Engineering, 2021:315-319. |
[21] | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778. |
[22] | 王宪保, 肖本督, 姚明海. 一种结合类激活映射的半监督图像分类方法[J]. 小型微型计算机系统, 2022, 43(6):1204-1209. |
Wang Xianbao, Xiao Bendu, Yao Minghai. Semi-supervised image classification method combined with class activation mapping[J]. Journal of Chinese Computer Systems, 2022, 43(6):1204-1209. | |
[23] | Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:7132-7141. |
[24] | Xiao J, Hays J, Ehinger K A, et al. Sun database:Large- scale scene recognition from abbey to zoo[C]. San Francisco: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2010:3485-3492. |
[25] | 朱晓慧, 钱丽萍, 傅伟. 图像数据增强技术研究综述[J]. 软件导刊, 2021, 20(5):230-236. |
Zhu Xiaohui, Qian Liping, Fu Wei. Overview of research on image data enhancement technology[J]. Software Guide, 2021, 20(5):230-236. | |
[26] |
Shi J, Zhu H, Yu S, et al. Scene categorization model using deep visually sensitive features[J]. IEEE Access, 2019, 7(7):45230-45239.
doi: 10.1109/Access.6287639 |
[1] | Bin ,WANG Sen. Visual Detection of Structural Cracks Using Depth Deformable Contour ModelLAI [J]. Electronic Science and Technology, 2023, 36(9): 35-40. |
[2] | YUE Shengyao,XU Baiqiang,XU Guidong,XU Chenguang,ZHANG Sai. Super-Resolution Imaging of Laminate Debonding Defects via Deconvolutional Neural Network and Ultrasound Guided Waves [J]. Electronic Science and Technology, 2023, 36(8): 7-13. |
[3] | ZHA Junwei,ZHANG Hongyan. Dynamic Receptive Field Feature Selection Dehazing Network [J]. Electronic Science and Technology, 2023, 36(7): 56-63. |
[4] | SUN Hong,ZHAO Yingzhi. Lightweight Generative Adversarial Networks Based on Multi-Scale Gradient [J]. Electronic Science and Technology, 2023, 36(7): 32-38. |
[5] | OU Jingyi,TIAN Ying,XIANG Xin,SONG Qizhe. Fault Diagnosis of Few Shot Industrial Process Based on Transfer BN-CNN Framework [J]. Electronic Science and Technology, 2023, 36(7): 49-55. |
[6] | ZENG Xinxin,ZHANG Hongyan. A Farmland Parcel Extraction Network Based on Multi-Scale Semantic Information Enhancement [J]. Electronic Science and Technology, 2023, 36(7): 70-74. |
[7] | SHI Jianke,QIAO Meiying,LI Bingfeng,ZHAO Yan. Underwater Occlusion Target Detection Algorithm Based on Attention Mechanism [J]. Electronic Science and Technology, 2023, 36(5): 62-70. |
[8] | CUI Zhuodong,CHEN Wei,YIN Zhong. Helmet Wearing Detection Based on Enhanced Feature Fusion Network [J]. Electronic Science and Technology, 2023, 36(4): 44-51. |
[9] | SUN Hong,ZHANG Yuxiang. Super-Resolution Image Reconstruction Algorithm Based on Multi-Feature Gated Feedback Residual Network [J]. Electronic Science and Technology, 2023, 36(4): 65-70. |
[10] | HUANG Yuan,WEI Yunbing,TONG Dongbing,WANG Weigao. Short-Term Photovoltaic Power Prediction Based on VMD and Improved TCN [J]. Electronic Science and Technology, 2023, 36(3): 42-49. |
[11] | ZUO Bin,LI Feifei. An Effective Segmentation Method for COVID-19 CT Image Based on Attention Mechanism and Inf-Net [J]. Electronic Science and Technology, 2023, 36(2): 22-28. |
[12] | YU Guangzeng,ZHANG Qiaoling,ZHOU Yurong. Bearing Fault Diagnosis Based on SC-CNN-BiLSTM [J]. Electronic Science and Technology, 2023, 36(11): 56-65. |
[13] | ZHANG Wuran,LI Feifei. A 3D Object Detection Network Based on Attention Mechanism and Context Awareness [J]. Electronic Science and Technology, 2023, 36(10): 15-23. |
[14] | HUANG Yajing,LIAO Aihua,YU Miao,LI Xiaolong,HU Dingyu. An Improved CNN Method for Bearing Acoustic Fault Diagnosis [J]. Electronic Science and Technology, 2023, 36(1): 75-80. |
[15] | DENG Yuan,SHI Yiping,JIANG Yueying,ZHU Yamei,LIU Jin. Infant Expression Recognition Algorithm Based on MobileNetV2 and LBP Feature Fusion [J]. Electronic Science and Technology, 2022, 35(8): 47-52. |
|