Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (11): 28-34.doi: 10.16180/j.cnki.issn1007-7820.2023.11.005
Previous Articles Next Articles
SUN Hong1,MO Guangping1,XU Guanghui2,YANG Chen1
Received:
2022-06-24
Online:
2023-11-15
Published:
2023-11-20
Supported by:
CLC Number:
SUN Hong,MO Guangping,XU Guanghui,YANG Chen. Advances in Application of Deep Learning in Centroid Localization and Vertebrae Segmentation of Spine[J].Electronic Science and Technology, 2023, 36(11): 28-34.
Table 2.
Summary of deep learning methods for locating the centroid of spine"
方法 | 应用数据集 | dmean/mm | dst/mm | id.rate/% |
---|---|---|---|---|
文献[ | CSI-Label 2014 | 5.08 | 3.95 | 90.90 |
文献[ | CSI-Label 2014 | 7.10 | 7.70 | 88.00 |
文献[ | VerSe2019 | 5.71 | 6.28 | 89.79 |
文献[ | CSI-Label 2014 | 2.90 | 5.80 | 89.00 |
文献[ | CSI-Label 2014 | 2.55 | 1.40 | 97.40 |
文献[ | CSI-Label 2014 | 6.47 | 8.56 | 88.30 |
文献[ | CSI-Label 2014 | 5.60 | 7.10 | 85.80 |
文献[ | CSI-Label 2014 | 6.20 | 4.10 | 88.50 |
文献[ | CSI-Label 2014 | 8.60 | 7.80 | 85.00 |
Table 3.
Summary of deep learning methods for segmentation of spine"
方法 | 数据集 | 分割段 | 距离/mm | Dice/% |
---|---|---|---|---|
文献[ | VerSe2019 | 全脊柱 | 6.53H | 94.00 |
文献[ | whole-spine | 全脊柱 | 1.06A(4.06H) | 93.80 |
文献[ | whole-spine | 胸腰椎 | 0.79A(3.85H) | 96.00 |
文献[ | xVertSeg | 腰椎 | NULL | 87.70 |
文献[ | CSI-Label2014 | 胸腰椎 | NULL | 95.30 |
文献[ | SGSH | 颈椎 | 20.89A(0.33H) | 94.37 |
文献[ | SNUBH | 颈椎 | 16.23A(0.39H) | 96.23 |
文献[ | xVertSeg | 腰椎 | NULL | 88.46 |
文献[ | xVertSeg | 腰椎 | 0.40A | 95.70 |
文献[ | CSI-Label2014 | 胸腰椎 | 0.32A | 94.00 |
[1] |
孔鸣, 何前锋, 李兰娟. 人工智能辅助诊疗发展现状与战略研究[J]. 中国工程科学, 2018, 20(2):86-91.
doi: 10.15302/J-SSCAE-2018.02.013 |
Kong Ming, He Qianfeng, Li Lanjuan. AI assisted clinical diagnosis & treatment and development strategy[J]. Strategic Study of CAE, 2018, 20(2):86-91.
doi: 10.15302/J-SSCAE-2018.02.013 |
|
[2] | 尹梓名, 孙大运, 胡晓晖, 等. 人工智能在骨质疏松症中的应用研究综述[J]. 小型微型计算机系统, 2019, 40(9):1839-1850. |
Yin Ziming, Sun Dayun, Hu Xiaohui, et al. Review on the application of artificial intelligence for osteoporosis[J]. Journal of Chinese Computer Systems, 2019, 40(9):1839-1850. | |
[3] | Löffler M T, Sekuboyina A, Jacob A, et al. A vertebral segmentation dataset with fracture grading[J]. Radiology:Artificial Intelligence, 2020, 2(4):138-146. |
[4] |
Hesamian M H, Jia W, He X, et al. Deep learning techniques for medical image segmentation: Achievements and challenges[J]. Journal of Digital Imaging, 2019, 32(4):582-596.
doi: 10.1007/s10278-019-00227-x pmid: 31144149 |
[5] | 马金林, 邓媛媛, 马自萍. 肝脏肿瘤CT图像深度学习分割方法综述[J]. 中国图象图形学报, 2020, 25(10):2024-2046. |
Ma Jinlin, Deng Yuanyuan, Ma Ziping. Review of deep learning segmentation methods for CT images of liver tumors[J]. Journal of Image and Graphics, 2020, 25(10):2024-2046. | |
[6] | 闫超, 孙占全, 田恩刚, 等. 基于深度学习的医学图像分割技术研究进展[J]. 电子科技, 2021, 34(2):7-11. |
Yan Chao, Sun Zhanquan, Tian Engang, et al. Research progress of medical image segmentation based on deep learning[J]. Electronic Science and Technology, 2021, 34(2):7-11. | |
[7] | Sekuboyina A, Husseini M E, Bayat A, et al. VerSe:A vertebrae labelling and segmentation benchmark for multi-detector CT images[J]. Medical Image Analysis, 2021, 73(10):2166-2171. |
[8] |
Korez R, Ibragimov B, Likar B, et al. A framework for automated spine and vertebrae interpolation-based detection and model-based segmentation[J]. IEEE Transactions on Medical Imaging, 2015, 34(8):1649-1662.
doi: 10.1109/TMI.2015.2389334 pmid: 25585415 |
[9] | Yao J, Burns J E, Munoz H, et al. Detection of vertebral body fractures based on cortical shell unwrapping[C]. Heidelberg: International Conference on Medical ImageComputing and Computer-Assisted Intervention, 2012:509-516. |
[10] | Glocker B, Feulner J, Criminisi A, et al. Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans[C]. Heidelberg: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2012:590-598. |
[11] | Jakubicek R, Chmelik J, Jan J, et al. Learning-based vertebra localization and labeling in 3D CT data of possibly incomplete and pathological spines[J]. Computer Methods and Programs in Biomedicine, 2020, 183(C):105081-105087. |
[12] | Chen J, Wang Y, Guo R, et al. Lsrc:A long-short range context-fusing framework for automatic 3D vertebra localization[C]. Cham: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2019:95-103. |
[13] | Payer C, Stern D, Bischof H, et al. Coarse to fine vertebrae localization and segmentation with spatial Configuration-Net and U-Net[C]. Valletta: Proceedings of the Fifteenth International Joint Conference on Computer Vision,Imaging and Computer Graphics Theory and Applications, 2020:124-133. |
[14] | Qin C, Yao D, Zhuang H, et al. Residual block-based multi-label classification and localization network with integral regression for vertebrae labeling[EB/OL].(2020-01-01)[2022-06-23]https://arxiv.org/abs/2001.0017. |
[15] | Wang F, Zheng K, Lu L, et al. Automatic vertebra localization and identification in CT by spine rectification and anatomically-constrained optimization[C]. Nashville: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021:5280-5288. |
[16] |
Liao H, Mesfin A, Luo J. Joint vertebrae identification and localization in spinal CT images by combining short-and long-range contextual information[J]. IEEE Transactions on Medical Imaging, 2018, 37(5):1266-1275.
doi: 10.1109/TMI.2018.2798293 |
[17] | McCouat J, Glocker B. Vertebrae detection and localization in CT with two-stage CNNS and dense annotateions[EB/OL].(201910-14)[2022-06-23]https://arxiv.org/abs/1910.05911. |
[18] | Levine M, De Silva T, Ketcha M D, et al. Automatic vertebrae localization in spine CT:A deep-learning approach for image guidance and surgical data science[C]. San Diego: Image-Guided Procedures,Robotic Interventions and Modeling.International Society for Optics and Photonics, 2019:3651-3670. |
[19] | Sekuboyina A, Rempfler M, Kukaĉka J, et al. Btrfly net:Vertebrae labelling with energy-based adversarial learning of local spine prior[C]. Cham: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2018:649-657. |
[20] | Yang D, Xiong T, Xu D. Automatic vertebra labeling in large-scale medical images using deep image-to-image network with message passing and sparsity regularization[C]. Cham: Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics, 2019:179-197. |
[21] | Shi D, Pan Y, Liu C, et al. Automatic localization and segmentation of vertebral bodies in 3D CT volumes with deep learning[C]. New York: Proceedings of the Second International Symposium on Image Computingand Digital Medicine, 2018:42-46. |
[22] | Rak M, Steffen J, Meyer A, et al. Combining convolutional neural networks and star convex cuts for fast whole spine vertebra segmentation in MRI[J]. Compute Methods and Programs in Biomedicine, 2019, 177(8):47-56. |
[23] |
Cheng P, Yang Y, Yu H, et al. Automatic vertebrae localization and segmentation in CT with a two-stage Dense-U-Net[J]. Scientific Reports, 2021, 11(1):1-13.
doi: 10.1038/s41598-020-79139-8 |
[24] |
Bae H J, Hyun H, Byeon Y, et al. Fully automated 3D segmentation and separation of multiple cervical vertebrae in CT images using a 2D convolutional neural networks[J]. Computer Methods and Programs in Biomedicine, 2020, 184(3):105119-105131.
doi: 10.1016/j.cmpb.2019.105119 |
[25] |
Lessmann N, Van G B, De P A, et al. Iterative fully convolutional neural networks for automatic vertebra segmentation and identification[J]. Medical Image Analysis, 2019, 53(4):142-155.
doi: 10.1016/j.media.2019.02.005 |
[26] |
Chuang C H, Lin C Y, Tsai Y Y, et al. Efficient triple output network for vertebral segmentation and identification[J]. IEEE Access, 2019, 7(2):117978-117985.
doi: 10.1109/Access.6287639 |
[27] | Janssens R, Zeng G, Zheng G. Fully automatic segmentation of lumbar vertebrae from CT images using cascaded 3D fully convolutional networks[C]. Washington D.C.: IEEE the Fifteenth International Symposium on Biomedical Imaging, 2018:893-897. |
[28] |
Xia L, Xiao L, Quan G, et al. 3D cascaded convolutional networks for multi-vertebrae segmentation[J]. Current Medical Imaging, 2020, 16(3):231-240.
doi: 10.2174/1573405615666181204151943 pmid: 32133953 |
[29] | Zareie M, Parsaei H, Amiri S, et al. Automatic segmentation of vertebrae in 3D CT images using adaptive fast 3D pulse coupled neural networks[J]. Australasian Physical & Engineering Sciences in Medicine, 2018, 41(4):1009-1020. |
[1] | Bin ,WANG Sen. Visual Detection of Structural Cracks Using Depth Deformable Contour ModelLAI [J]. Electronic Science and Technology, 2023, 36(9): 35-40. |
[2] | SUN Hong,ZHAO Yingzhi. Lightweight Generative Adversarial Networks Based on Multi-Scale Gradient [J]. Electronic Science and Technology, 2023, 36(7): 32-38. |
[3] | ZENG Xinxin,ZHANG Hongyan. A Farmland Parcel Extraction Network Based on Multi-Scale Semantic Information Enhancement [J]. Electronic Science and Technology, 2023, 36(7): 70-74. |
[4] | LI Keran,CHEN Sheng,KE Panpan. A Method of Facial Mask Segmentation Based on CA-Net [J]. Electronic Science and Technology, 2023, 36(6): 64-71. |
[5] | SHI Jianke,QIAO Meiying,LI Bingfeng,ZHAO Yan. Underwater Occlusion Target Detection Algorithm Based on Attention Mechanism [J]. Electronic Science and Technology, 2023, 36(5): 62-70. |
[6] | LIU Yuwei,CAO Min,FENG Haojia. CNAS Recognition Criteria Automatic Benchmarking System Based on Natural Language Processing [J]. Electronic Science and Technology, 2023, 36(5): 28-33. |
[7] | ZHENG Yuheng,FU Dongxiang. UAV Detection Based on Slim-YOLOv4 with Embedded Device [J]. Electronic Science and Technology, 2023, 36(5): 55-61. |
[8] | CUI Zhuodong,CHEN Wei,YIN Zhong. Helmet Wearing Detection Based on Enhanced Feature Fusion Network [J]. Electronic Science and Technology, 2023, 36(4): 44-51. |
[9] | TANG Zheng,ZHANG Huilin,MA Lixin,LIU Jinzhi,WANG Hao. Identification of Foreign Objects on Transmission Lines Using Lightweight Network Algorithm [J]. Electronic Science and Technology, 2023, 36(4): 71-77. |
[10] | BAI Yingqi,PALIDAN·Tuerxun . A Scientific Literature Recommendation Method Based on Multi-Task Learning [J]. Electronic Science and Technology, 2023, 36(4): 59-64. |
[11] | LUO Ruipeng,FENG Mingke,HUANG Xin,ZOU Renling,LI Dan. A Review of Research on EEG Signal Preprocessing Methods [J]. Electronic Science and Technology, 2023, 36(4): 36-43. |
[12] | LU Dongxiang. Research Progress of Node Assignment Optimization Strategy in Road Traffic Network [J]. Electronic Science and Technology, 2023, 36(3): 81-86. |
[13] | YU Qiongfang,NIU Dongyang. Mixed Prediction of Mine Pressure Time and Space Based on LSTM Network [J]. Electronic Science and Technology, 2023, 36(2): 67-72. |
[14] | ZUO Bin,LI Feifei. An Effective Segmentation Method for COVID-19 CT Image Based on Attention Mechanism and Inf-Net [J]. Electronic Science and Technology, 2023, 36(2): 22-28. |
[15] | ZHAO Wenjun,ZHAI Han,ZHANG Hongyan. Total Variation and Sparsity Regularized Deep Nonnegative Matrix Factorization for Hyperspectral Unmixing [J]. Electronic Science and Technology, 2023, 36(2): 53-60. |
|