Electronic Science and Technology ›› 2024, Vol. 37 ›› Issue (7): 43-52.doi: 10.16180/j.cnki.issn1007-7820.2024.07.006
Previous Articles Next Articles
CAO Chunping, XU Zhihua
Received:
2023-02-08
Online:
2024-07-15
Published:
2024-07-17
Supported by:
CLC Number:
CAO Chunping, XU Zhihua. A Self-Supervised CT Image Classification Method Incorporating Intra-Slice Semantic and Inter-Slice Structural Features[J].Electronic Science and Technology, 2024, 37(7): 43-52.
Table 2.
Training loss of each model on the gastric cancer recurrence prediction data set"
数据量 | Context- Restore-2D | Rubik- Cube-3D | TCPC-3D | 本文模型 |
---|---|---|---|---|
20% | 1.268 | 1.155 | 1.308 | 0.939 |
40% | 0.112 | 0.739 | 0.991 | 0.689 |
60% | 0.938 | 0.532 | 0.792 | 0.467 |
80% | 0.892 | 0.396 | 0.524 | 0.201 |
100% | 0.874 | 0.328 | 0.476 | 0.147 |
损失降幅 | 31.07% | 71.60% | 63.61% | 84.35% |
Table 3.
Training loss of each model on the intracranial hemorrhage type detection data set"
数据量 | Context- Restore-2D | Rubik- Cube-3D | TCPC-3D | 本文模型 |
---|---|---|---|---|
20% | 0.233 | 0.167 | 0.189 | 0.145 |
40% | 0.191 | 0.138 | 0.167 | 0.109 |
60% | 0.176 | 0.129 | 0.142 | 0.085 |
80% | 0.161 | 0.110 | 0.124 | 0.072 |
100% | 0.153 | 0.099 | 0.119 | 0.065 |
损失降幅 | 34.62% | 40.7% | 37.04% | 55.17% |
[1] | 闫超, 孙占全, 田恩刚, 等. 基于深度学习的医学图像分割技术研究进展[J]. 电子科技, 2021, 34(2):7-11. |
Yan Chao, Sun Zhanquan, Tian Engang, et al. Research progress of medical image segmentation based on deep learning[J]. Electronic Science and Technology, 2021, 34(2):7-11. | |
[2] | 郑光远, 刘峡壁, 韩光辉. 医学影像计算机辅助检测与诊断系统综述[J]. 软件学报, 2018, 29(5):1471-1514. |
Zheng Guangyuan, Liu Xiabi, Han Guanghui. Survey on medical image computer aided detection and diagnosis systems[J]. Journal of Software, 2018, 29(5):1471-1514. | |
[3] | 陶笃纯. 迈向新世纪的医学影像技术[J]. 中国医学影像技术, 2000, 16(1):1-2. |
Tao Duchun. Medical imaging technology in the new century[J]. Chinese Journal of Medical Imaging Technology, 2000, 16(1):1-2. | |
[4] | Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553):436-444. |
[5] | Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition[EB/OL].(2015-04-10) [2023-02-15] https://arxiv.org/abs/1409.1556. |
[6] | Pan S J, Yang Q. A survey on transfer learning[J]. IE-EE Transactions on Knowledge and Data Engineering, 2009, 22(10):1345-1359. |
[7] | Jing L, Tian Y. Selfsupervised visual feature learning with deep neural networks:A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(11):4037-4058. |
[8] | 赵凯琳, 靳小龙, 王元卓. 小样本学习研究综述[J]. 软件学报, 2021, 32(2):349-369. |
Zhao Kailin, Jin Xiaolong, Wang Yuanzhuo. Survey on few-shot learning[J]. Journal of Software, 2021, 32(2):349-369. | |
[9] | 庄福振, 罗平, 何清, 等. 迁移学习研究进展[J]. 软件学报, 2015, 26(1):26-39. |
Zhuang Fuzhen, Luo Ping, He Qing, et al. Suvery on transfer learning research[J]. Journal of Software, 2015, 26(1):26-39. | |
[10] | He K, Girshick R, Dollár P. Rethinking imagenet pretraining[C]. Seoul: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019:4918-4927. |
[11] | Xu J. A review of self-supervised learning methods in the field of medical image analysis[J]. International Journal of Image,Graphics and Signal Processing, 2021, 13(4):33-46. |
[12] | Shurrab S, Duwairi R. Self-supervised learning methods and applications in medical imaging analysis:A survey[J]. PeerJ Computer Science, 2022(8):1045-1052. |
[13] | Chen L, Bentley P, Mori K, et al. Self-supervised learning for medical image analysis using image context restoration[J]. Medical Image Analysis, 2019, 58(5):101539-101543. |
[14] | Flanders A E, Prevedello L M, Shih G, et al. Construction of a machine learning dataset through collaboration:The RSNA 2019 brain CT hemorrhage challenge[J]. Radiology:Artificial Intelligence, 2020, 2(3):190211-190220. |
[15] | Jing L, Tian Y. Self-supervised visual feature learning with deep neural networks:A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(11):4037-4058. |
[16] | 彭玉姣. 基于自监督学习的图像特征表示方法研究[D]. 合肥: 安徽大学, 2021:7-15. |
Peng Yujiao. Research on image feature representation based on self-supervised learning[D]. Hefei: Anhui University, 2021:7-15. | |
[17] | Xie Y, Xu Z, Zhang J, et al. Self-supervised learning of graph neural networks:A unified review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(2):2412-2429. |
[18] | Bai W, Chen C, Tarroni G, et al. Self-supervised learning for cardiac MR image segmentation by anatomical position prediction[C]. Shenzhen: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2019:541-549. |
[19] | Henaff O. Data-efficient image recognition with contrastive predictive coding[C]. Online: International Conference on Machine Learning, 2020:4182-4192. |
[20] | Chen T, Kornblith S, Norouzi M, et al. A simple framework for contrastive learning of visual representations[C]. Online: International Conference on Machine Learning, 2020:1597-1607. |
[21] | He K, Fan H, Wu Y, et al. Momentum contrast for unsupervised visual representation learning[C]. Online: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020:9729-9738. |
[22] | Grill J B, Strub F, Altché F, et al. Bootstrap your own latent a new approach to self-supervised learning[J]. Advances in Neural Information Processing Systems, 2020, 33(3):21271-21284. |
[23] | Chen X, He K. Exploring simple siamese representation learning[C]. Online: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021:15750-15758. |
[24] | Zbontar J, Jing L, Misra I, et al. Barlow twins:Self-supe-rvised learning via redundancy reduction[C]. Online: International Conference on Machine Learning, 2021:12310-12320. |
[25] | Ciga O, Xu T, Martel A L. Self supervised contrastive learning for digital histopathology[J]. Machine Learning with Applications, 2022(7):100198-100206. |
[26] | Zhou Z, Sodha V, Rahman Siddiquee M M, et al. Models genesis:Generic autodidactic models for 3D medical image analysis[C]. Shenzhen: Medical Image Computing and Computer Assisted Intervention, 2019:384-393. |
[27] | Taleb A, Lippert C, Klein T, et al. Multimodal self-supe-rvised learning for medical image analysis[C]. Online: International Conference on Information Processing in Medical Imaging, 2021:661-673. |
[28] | Zheng H, Han J, Wang H, et al. Hierarchical self-supervised learning for medical image segmentation based on multi-domain data aggregation[C]. Strasbourg: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2021:622-632. |
[29] | Zhuang X, Li Y, Hu Y, et al. Self-supervised feature learning for 3D medical images by playing a rubik's cube[C]. Shenzhen: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2019:420-428. |
[30] | Noroozi M, Favaro P. Unsupervised learning of visual representations by solving jigsaw puzzles[C]. Amsterdam: Computer Vision-ECCV the Fourteenth European Conference, 2016:69-84. |
[31] | Zhu J, Li Y, Hu Y, et al. Embedding task knowledge into 3D neural networks via self-supervised learning[EB/OL].(2020-06-10)[2023-02015]https://arxiv.org/abs/2006.05798. |
[32] | Tang Y, Yang D, Li W, et al. Self-supervised pretraining of swin transformers for 3d medical image analysis[C]. New Orleans: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022:20730-20740. |
[33] | Ahmed S, Iftekharuddin K M, Vossough A. Efficacy of texture,shape and intensity feature fusion for posterior-fossa tumor segmentation in MRI[J]. IEEE Transactions on Information Technology in Biomedicine, 2011, 15(2):206-213. |
[34] | 谢凯, 孙鸿飞, 林涛, 等. 影像组学中特征提取研究进展[J]. 中国医学影像技术, 2017, 33(12):1792-1796. |
Xie Kai, Sun Hongfei, Lin Tao, et al. Research progresses in feature extraction of radiomics[J]. Chinese Journal Medical Imaging Technology, 2017, 33(12):1792-1796. | |
[35] | Yu H, Winkler S. Image complexity and spatial information[C]. Klagenfurt: The Fifth International Workshop on Quality of Multimedia Experience, 2013:12-17. |
[36] |
郭小英, 李文书, 钱宇华, 等. 可计算图像复杂度评价方法综述[J]. 电子学报, 2020, 48(4):819-826.
doi: 10.3969/j.issn.0372-2112.2020.04.024 |
Guo Xiaoying, Li Wenshu, Qian Yuhua, et al. Computational evaluation methods of visual complexity perception for images[J]. Acta Electronica Sinica, 2020, 48(4): 819-826.
doi: 10.3969/j.issn.0372-2112.2020.04.024 |
|
[37] |
周兵, 刘玉霞, 杨欣欣, 等. 图像复杂度研究综述[J]. 计算机科学, 2018, 45(9):30-37.
doi: 10.11896/j.issn.1002-137X.2018.09.004 |
Zhou Bing, Liu Yuxia, Yang Xinxin, et al. Review of research on image complexity[J]. Computer Science, 2018, 45(9):30-37.
doi: 10.11896/j.issn.1002-137X.2018.09.004 |
|
[38] | Buslaev A, Iglovikov V I, Khvedchenya E, et al. Albumentations:Fast and flexible image augmentations[J]. Information, 2020, 11(2):125-131. |
[1] | Bin ,WANG Sen. Visual Detection of Structural Cracks Using Depth Deformable Contour ModelLAI [J]. Electronic Science and Technology, 2023, 36(9): 35-40. |
[2] | OU Jingyi,TIAN Ying,XIANG Xin,SONG Qizhe. Fault Diagnosis of Few Shot Industrial Process Based on Transfer BN-CNN Framework [J]. Electronic Science and Technology, 2023, 36(7): 49-55. |
[3] | WANG Qiao,HU Chunyan,LI Feifei. Scene Recognition Algorithm Based on Deep Transfer Learning and Multi-Scale Feature Fusion [J]. Electronic Science and Technology, 2023, 36(11): 19-27. |
[4] | ZHAI Yuexian,LIU Xiang,SONG Jialin. Staging Diagnosis of Liver Fibrosis Based on Transfer Learning Strategy [J]. Electronic Science and Technology, 2021, 34(6): 11-16. |
[5] | XUE Yongjie,JU Zhiyong. Fish Recognition Algorithm Based on Improved AlexNet [J]. Electronic Science and Technology, 2021, 34(4): 12-17. |
[6] | CHEN Lei,LI Feifei,CHEN Qiu. Multi-label Image Annotation Algorithm Based on Transfer Learning and Weighted Ranking Support Vector Machine [J]. Electronic Science and Technology, 2020, 33(3): 12-16. |
|