[1] |
李亮亮. 高速列车受电弓视频监控智能分析算法的应用[J]. 铁道车辆, 2019, 57(9):31-33.
|
|
Li Liangliang. Application of the visual monitoring intelligent analysis calculation method for pantographs on high speed trains[J]. Rolling Stock, 2019, 57(9):31-33.
|
[2] |
张新龙. 基于单目视觉激光扫描成像的受电弓磨损检测系统设计[D]. 石家庄: 石家庄铁道大学, 2019.
|
|
Zhang Xinlong. Design of pantograph wear detection system based on monocular vision laser scanning imaging[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2019.
|
[3] |
蒋常升. 基于图像分析的轨道车辆受电弓滑板健康状态检测[D]. 兰州: 兰州交通大学, 2020.
|
|
Jiang Changsheng. Health status detection of rail vehicle pantograph skateboard based on image analysis[D]. Lanzhou: Lanzhou Jiaotong University, 2020.
|
[4] |
张振琛, 顾桂梅, 李占斌. 基于图像处理的弓网燃弧检测方法[J]. 兰州交通大学学报, 2020, 39(2):51-57.
|
|
Zhang Zhenchen, Gu Guimei, Li Zhanbin. Pantograph-catenary arc detection method based on image processing[J]. Journal of Lanzhou Jiaotong University, 2020, 39(2):51-57.
|
[5] |
黄振. 单目红外图像的弓网接触线检测跟踪算法研究[D]. 武汉: 华中科技大学, 2019.
|
|
Huang Zhen. The research on detection and tracking algorithm of pantograph and contact-wire based on monocular infrared images[D]. Wuhan: Huazhong University of Science and Technology, 2019.
|
[6] |
杨晨, 邵丽丽, 牛慧敏, 等. 基于YOLOv3-tiny检测和KCF追踪算法的受电弓故障检测[J]. 智能计算机与应用, 2020, 10(5):47-51.
|
|
Yang Chen, Shao Lili, Niu Huimin, et al. Detection of pantograph faults based on YOLOv3-tiny dection and KCF tracking algorithm[J]. Intelligent Computers and Applications, 2020, 10(5):47-51.
|
[7] |
尹红娟, 栾帅. 三帧差分运动目标检测算法分析与验证[J]. 计算机与数字工程, 2017, 45(1):69-71.
|
|
Yin Hongjuan, Luan Shuai. Three-image difference algorithm for moving target detection[J]. Computer and Digital Engineering, 2017, 45(1):69-71.
|
[8] |
冯进功. 基于数学形态学的医学图像处理研究[D]. 黑龙江: 黑龙江大学, 2009.
|
|
Feng Jingong. Research on medical image processing based on mathematical morphology[D]. Heilongjiang: Heilongjiang University, 2009.
|
[9] |
朱玥. 基于语义特征的视觉关注点检测[D]. 大连: 大连理工大学, 2017.
|
|
Zhu Yue. Fixation detection based on semantic features[D]. Dalian: Dalian University of Technology, 2017.
|
[10] |
唐小煜, 黄进波, 冯洁文, 等. 基于U-net和YOLOv4的绝缘子图像分割与缺陷检测[J]. 华南师范大学学报(自然科学版), 2020, 52(6):15-21.
|
|
Tang Xiaoyu, Huang Jinbo, Feng Jiewen, et al. Image segmentation and defect detection of insulators based on U-net and YOLOv4[J]. Journal of South China Normal University(Natural Science Edition), 2020, 52(6):15-21.
|
[11] |
赵晓聘. 基于深度网络的图像语义分割研究[D]. 北京: 北京交通大学, 2020.
|
|
Zhao Xiaopin. Research on image semantic segmentation based on deep network[D]. Beijing: Beijing Jiaotong University, 2020.
|
[12] |
闫超, 孙占全, 田恩刚, 等. 基于深度学习的医学图像分割技术研究进展[J]. 电子科技, 2021, 34(2):7-11.
|
|
Yan Chao, Sun Zhanquan, Tian Engang, et al. Research progress of medical image segmentation technology based on deep learning[J]. Electronic Science and Technology, 2021, 34(2):7-11.
|
[13] |
段辉军, 王志刚, 王彦. 基于改进YOLO网络的双通道显著性目标识别算法[J]. 激光与红外, 2020, 50(11):1370-1378.
|
|
Duan Huijun, Wang Zhigang, Wang Yan. Two-channel salient target recognition algorithm based on improved YOLO network[J]. Laser & Infrared, 2020, 50(11):1370-1378.
|
[14] |
谈小峰, 王直杰. 基于YOLOv4改进算法的乒乓球识别[J]. 科技创新与应用, 2020(27):74-76.
|
|
Tan Xiaofeng, Wang Zhijie. Table tennis recognition based on improved YOLOv4 algorithm[J]. Technology Innovation and Application, 2020(27):74-76.
|
[15] |
Zhao B, Feng J, Wu X, et al. A survey on deep learning-based fine-grained object classification and semantic segmentation[J]. International Journal of Automation and Computing, 2017, 14(2):119-135.
doi: 10.1007/s11633-017-1053-3
|
[16] |
Chen W, Zhong X, Zhang J. Optimization research and defect object detection of aeroengine blade boss based on YOLOv4[J]. Journal of Physics:Conference Series, 2021, 1746(1):1-7.
|
[17] |
余忠艺. 基于嵌入式平台的目标跟踪算法与应用[D]. 济南: 山东大学, 2019.
|
|
Yu Zhongyi. Reaearch and application of object tracking algorithm and based on embedded system[D]. Jinan: Shandong University, 2019.
|