Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (1): 28-37.doi: 10.16180/j.cnki.issn1007-7820.2023.01.005
Previous Articles Next Articles
ZHANG Manjie1,YANG Fangyan1,JI Yunfeng2
Received:
2021-06-03
Online:
2023-01-15
Published:
2023-01-17
Supported by:
CLC Number:
ZHANG Manjie,YANG Fangyan,JI Yunfeng. Research Progress of Body Posture Estimation in Ball Games[J].Electronic Science and Technology, 2023, 36(1): 28-37.
Table 1.
Research progress of motion video analysis technology"
研究来源 | 年份 | 运动类型 | 检测对象 | 目标 |
---|---|---|---|---|
文献[4] | 2008 | 足球 | 颜色特征 | 镜头分类 |
文献[5] | 2012 | 足球、高尔夫球 | 颜色特征 | 视频序列分类 |
文献[6] | 2013 | 篮球 | 颜色特征和区域特征 | 视频分割 |
文献[7] | 2014 | 足球 | 光流和颜色特征 | 视频分割、事件分类 |
文献[8] | 2016 | 足球 | 外观和运动模型 | 遮挡、多目标追踪 |
文献[9] | 2017 | 足球 | 视频和外部文本信息 | 利用高级特征分析视频 |
文献[10] | 2019 | 篮球 | 视频分类和上下文信息 | 球员动作跟踪与分析 |
文献[11] | 2018 | 篮球 | 文本和视频帧 | 提取慢动作 |
文献[12] | 2018 | 游泳 | 运动员关节 | 矫正运动员姿态 |
文献[13] | 2019 | - | 运动员姿态 | 运动员动作识别 |
文献[14] | 2020 | 乒乓球 | 球员2D姿态 | 预测乒乓球落脚点 |
Table 2.
Introduction to human pose estimation data sets"
年份 | 数据集 | 样本数量 | 样本标注特征 | 检测场景 |
---|---|---|---|---|
2010 | LSP | 训练:1 000 测试:1 000 | 标注14个关节点,包含2 000个姿势注释 | 单人 |
2013 | FILC | 训练:3 987 测试:1 016 | 10个上半身关节点 | 单人 |
2014 | MPII | 2.5×104 | 16个关节点,涵盖410项人类活动,包含超过4万人 | 单人/多人 |
2014 | MSCOCO | 超过3.3×105 | 17个关节点,包含10万人 | 多人 |
2017 | AI Challenger | 训练:2.1×105 验证:3×104 测试:3×104 | 标注14个关节点,是目前最大的人体姿态估计图像数据集 | 多人 |
2019 | Crowd Pose | 训练:10×103 验证:2×103 测试:8×103 | 标注14个关节点,包含8万行人,适应密集场景 | 多人 |
Table 3.
Comparison of individual body pose estimation methods"
方法 | 网络 | 作者 | 表现/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
FLIC | LSP(PCP) | MPII(PCKh@0.5) | |||||||||
Eblow | Wrist | ||||||||||
基于坐标回归 | Deep-Pose | Toshev | 92.3 | 82.0 | 61.0 | - | |||||
IEF | Carreira | - | - | 72.5 | 81.3 | ||||||
基于热图检测 | CNN和图模型 | Tompson | 95.2 | 91.2 | 67.2 | - | |||||
堆叠沙漏网络 | Newell | 99.0 | 97.0 | - | 90.9 | ||||||
PRMs | Yang | - | - | 93.9 | 92.0 | ||||||
HRNet | Sun | - | - | - | 92.3 | ||||||
WASP | UniPose | 72.8 | 92.7 | ||||||||
回归与检测 混合模型 | Coordinate Net和Heatmap Net串联 | Bulat | - | - | 90.7 | 89.7 | |||||
DS-CNN | Fan | - | - | 84.0 | - |
Table 4.
Comparison of human body pose estimation methods for multiple people"
方法 | 文献 | 多人姿态估计方法 | 主要网络 | 表现/% | ||
---|---|---|---|---|---|---|
MPII(PCKh@0.5) | MSCOCO | MAP | ||||
自顶向下 | [ | RCNN | RetNet-101 | - | - | 64.9 |
[32] | CPN | GLobalNet、Refinenet | - | 72.1 | - | |
[ | HR-NET | 3D HR-NET | - | - | 83.8 | |
[ | Faster-RCNN | AlignPSt | - | - | 94.0 | |
[ | Open Pose | CPM | 75.6 | 61.8 | - | |
[ | CRF | FCN | - | - | 79.1 | |
自底向上 | [ | HR-NET | HigherHR-NET | - | 74.9 | - |
[ | HRNet | W48 | - | 77.7 | - |
[1] | 周瑾, 孟祥印, 叶美松. 基于计算机视觉和LabVIEW平台的网球鹰眼系统[J]. 传感器与微系统, 2018, 37(7):102-104. |
Zhou Jin, Meng Xiangyin, Ye Meisong. Tennis hawkeye system based on computer vision and LabVIEW platform[J]. Transducer and Microsystem Technologies, 2018, 37(7):102-104. | |
[2] | Lai J H, Chien S Y. Tennis video with semantic scalability[C]. San Deigo: Proceedings of the IEEE International Symposium on Multimedia, 2009. |
[3] | Eltoukhy M, Asfour S, Thompson C, et al. Evaluation of the performance of digital video analysis of human motion: Dartfish tracking system[J]. International Journal of Scientific and Engineering Research, 2012, 3(3):1-6. |
[4] | 于俊清, 王宁. 基于子窗口区域的足球视频镜头分类[J]. 中国图象图形学报, 2008, 13(7):152-157. |
Yu Junqing, Wang Ning. Shot classification for soccer video based on sub-window region[J]. Journal of Image and Graphics, 2008, 13(7):152-157. | |
[5] | Hanna J, Patlar F, Akbulut A, et al. HMM based classification of sports videos using color feature[C]. Sofia: Proceedings of the IEEE International Conference Intelligent Systems, 2012. |
[6] | 朱映映, 刘剑武, 宋娜. 篮球视频冗余数据分析与检测[J]. 小型微型计算机系统, 2010, 31(9):1873-1876. |
Zhu Yingying, Liu Jianwu, Song Na. Analysis and detection of redundancy data on basketball video[J]. Journal of Chinese Computer Systems, 2010, 31(9):1873-1876. | |
[7] |
Pandya D S, Zaveri M A. A novel framework for semantic analysis of an illumination-variant soccer video[J]. EURASIP Journal on Image and Video Processing, 2014, 2014(1):49-56.
doi: 10.1186/1687-5281-2014-49 |
[8] |
Baysal S, Duygulu P. Sentioscope: A soccer player tracking system using model field particles[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(7):1350-1362.
doi: 10.1109/TCSVT.2015.2455713 |
[9] |
Wang Z, Yu J, He Y. Soccer video event annotation by synchronization of attack-defense clips and match reports with coarse-grained time information[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(5):1104-1117.
doi: 10.1109/TCSVT.2016.2515280 |
[10] |
Yoon Y, Hwang H, Choi Y, et al. Analyzing basketball movements and pass relationships using realtime object tracking techniques based on deep learning[J]. IEEE Access, 2019, 7(99):56564-56576.
doi: 10.1109/ACCESS.2019.2913953 |
[11] |
Chen H T, He Y Z, Hsu C C. Computer-assisted yoga training system[J]. Multimedia Tools and Applications, 2018, 77(18):23969-23991.
doi: 10.1007/s11042-018-5721-2 |
[12] | Dan Z, Einfalt M, Eggert C, et al. Kinematic pose rectification for performance analysis and retrieval in sports[C]. Salt Lake: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018. |
[13] |
Kong L, Huang D, Qin J, et al. A joint framework for athlete tracking and action recognition in sports videos[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(2):532-548.
doi: 10.1109/TCSVT.2019.2893318 |
[14] | Wu E, Koike H. FuturePong: Real-time table tennis trajectory forecasting using pose prediction network[C]. Honolulu: Proceedings of the Conference on Human Factors in Computing Systems, 2020. |
[15] | Fischler M A, Elschlager R A. The representation and matching of pictorial structures[J]. IEEE Transactions on Computers, 1973, 22(1):67-92. |
[16] | Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]. San Diego: Proceedings of the International Conference on Computer Vision and Pattern Recognition, 2005. |
[17] |
Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110.
doi: 10.1023/B:VISI.0000029664.99615.94 |
[18] | Yi Y, Ramanan D. Articulated pose estimation with flexible mixtures-of-parts[C]. Colorado Springs: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2011. |
[19] | Toshev A, Szegedy C. DeepPose: Human pose estimation via deep neural networks[C]. Portland: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013. |
[20] | Carreira J, Agrawal P, Fragkiadaki K, et al. Human pose estimation with iterative error feedback[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. |
[21] | Tompson J, Jain A, Lecun Y, et al. Joint training of a convolutional network and a graphical model for human pose estimation[C]. Columbus: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014. |
[22] | Li S Z. Markov random field modeling in image analysis[M]. New York: Springer-Verlag, 2001. |
[23] | Newell A, Yang K, Jia D. Stacked hourglass networks for human pose estimation[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. |
[24] | Yang W, Li S, Ouyang W, et al. Learning feature pyramids for human pose estimation[C]. Venice: Proceedings of the IEEE International Conference on Computer Vision, 2017. |
[25] | Sun K, Xiao B, Liu J, et al. Deep high-resolution representation learning for human pose estimation[C]. Long Beach: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019. |
[26] | Zhang J, Chen Z, Tao D. Towards high performance human keypoint detection[C]. Seattle: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020. |
[27] | Artacho B, Savakis A. UniPose: Unified human pose estimation in single images and videos[C]. Seattle: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020. |
[28] | Bulat A, Tzimiropoulos G. Human pose estimation via convolutional part heatmap regression[C]. Amsterdam: Proceedings of the European Conference on Computer Vision, 2016. |
[29] | Fa N X, Kang Z, Lin Y, et al. Combining local appearance and holistic view: Dual-source deep neural networks for human pose estimation[C]. Boston: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015. |
[30] | Papandreou G, Zhu T, Kanazawa N, et al. Towards accurate multi-person pose estimation in the wild[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. |
[31] |
Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031 pmid: 27295650 |
[32] | Chen Y, Wang Z, Peng Y, et al. Cascaded pyramid network for multi-person pose estimation[C]. Salt Lake: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018. |
[33] | Wang M, Tighe J, Modolo D. Combining detection and tracking for human pose estimation in videos[C]. Seattle: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020. |
[34] | Huang J, Zhu Z, Guo F, et al. The devil is in the details: Delving into unbiased data processing for human pose estimation[C]. Seattle: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020. |
[35] | Yan Y, Li J, Qin J, et al. Anchor-free person search[C]. Nashville: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2021. |
[36] | Ma X, Su J, Wang C, et al. Context modeling in 3D human pose estimation: A unified perspective[C]. Nashville: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2021. |
[37] | Cao Z, Simon T, Wei S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. |
[38] | Xia F, Peng W, Chen X, et al. Joint multi-person pose estimation and semantic part segmentation[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. |
[39] | Cheng B, Xiao B, Wang J, et al. HigherHRNet: Scale-Aware representation learning for bottom-up human pose estimation[C]. Seattle: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020. |
[40] | Fabbri M, Lanzi F, Calderara S, et al. Compressed volumetric heatmaps for multi-person 3D pose estimation[C]. Seattle: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020. |
[41] | Luo Z, Wang Z, Huang Y, et al. Rethinking the heatmap regression for bottom-up human pose estimation[C]. Nashville: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2021. |
[42] | 叶飞, 刘子龙. 基于改进YOLOv3算法的行人检测研究[J]. 电子科技, 2021, 34(1):5-9. |
Ye Fei, Liu Zilong. Pedestrian detection based on improved YOLOv3 algorithm[J]. Electronic Science and Technology, 2021, 34(1):5-9. | |
[43] | Johnson S, Everingham M. Clustered pose and nonlinear appearance models for human pose estimation[C]. Aberystwyth: Proceedings of the British Machine Vision Conference, 2010. |
[44] | Sapp B, Taskar B. MODEC: Multimodal decomposable models for human pose estimation[C]. Portland: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013. |
[45] | Andriluka M, Pishchulin L, Gehler P, et al. Human pose estimation: New benchmark and state of the art analysis[C]. Columbus: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014. |
[46] | Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: Common objects in context[C]. Zurich: Proceedings of the European Conference on Computer Vision, 2014. |
[47] | Wu J, Zheng H, Zhao B, et al. AI Challenger: A large-scale dataset for going deeper in image understanding[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. |
[48] | Li J, Wang C, Zhu H, et al. CrowdPose: Efficient crowded scenes pose estimation and a new benchmark[C]. Long Beach: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019. |
[1] | YU Qiongfang,NIU Dongyang. Mixed Prediction of Mine Pressure Time and Space Based on LSTM Network [J]. Electronic Science and Technology, 2023, 36(2): 67-72. |
[2] | ZUO Bin,LI Feifei. An Effective Segmentation Method for COVID-19 CT Image Based on Attention Mechanism and Inf-Net [J]. Electronic Science and Technology, 2023, 36(2): 22-28. |
[3] | CHENG Changwen,CHEN Wei,CHEN Jinhong,YIN Zhong. YOLO-Improve Detection Method of Real-Time Mask Wearing [J]. Electronic Science and Technology, 2023, 36(2): 73-80. |
[4] | HUANG Yajing,LIAO Aihua,YU Miao,LI Xiaolong,HU Dingyu. An Improved CNN Method for Bearing Acoustic Fault Diagnosis [J]. Electronic Science and Technology, 2023, 36(1): 75-80. |
[5] | ZHOU Yongchang,HUANG Yayu. Establishment of a Predictive Model of the Process Parameters of Secondary Moisturizing Based on BP Neural Network [J]. Electronic Science and Technology, 2022, 35(9): 79-86. |
[6] | BI Jiazhen,SHEN Tuo,ZHANG Xuanxiong. A Research on Distance Measurement Between Trains in Rail Transit Based on Machine Vision [J]. Electronic Science and Technology, 2022, 35(9): 37-43. |
[7] | LIU Guohua,LU Hongmin,CHEN Chongchong,LI Wanyu,WAN Jianpeng. Wideband Nonlinear Behavior Modeling of Receiver with Neural Network [J]. Electronic Science and Technology, 2022, 35(8): 1-6. |
[8] | DENG Yuan,SHI Yiping,JIANG Yueying,ZHU Yamei,LIU Jin. Infant Expression Recognition Algorithm Based on MobileNetV2 and LBP Feature Fusion [J]. Electronic Science and Technology, 2022, 35(8): 47-52. |
[9] | ZHANG Qiaomu,ZHONG Qianwen,SUN Ming,LUO Wencheng,CHAI Xiaodong. Research on Dynamic Monitoring Method of Pantograph-Net Contact Position in Complex Environment [J]. Electronic Science and Technology, 2022, 35(8): 66-72. |
[10] | TONG Xiaosen,YANG Jinxian. Drilling Tool Acceleration Denoising Based on GRNN Network Adaptive Filtering [J]. Electronic Science and Technology, 2022, 35(7): 46-51. |
[11] | SUN Kang,XUAN Xuyang,LIU Penghui,ZHAO Laijun,LONG Jie. Partial Discharge Pattern Recognition of Cable Based on CNN-DCGAN under Small Data [J]. Electronic Science and Technology, 2022, 35(7): 7-13. |
[12] | ZHANG Chongchong,HUANG Yayu. A GA-BP Neural Network for Predicting the Structure of Leaf Tobacco [J]. Electronic Science and Technology, 2022, 35(6): 35-42. |
[13] | SHEN Ningjing,YUAN Jian. Crowd Counting Algorithm Based on Residual Dense Connection and Attention Fusion [J]. Electronic Science and Technology, 2022, 35(6): 6-12. |
[14] | WANG Peiyu,MA Lixin. Research on Permanent Magnet Synchronous Motor Servo System Based on Fuzzy Neural Network [J]. Electronic Science and Technology, 2022, 35(6): 83-88. |
[15] | CHENG Shunda,CHENG Ying,SUN Shijiang. Tumor Intelligent Auxiliary Diagnosis Method Based on Machine Learning [J]. Electronic Science and Technology, 2022, 35(5): 56-59. |
|