Electronic Science and Technology ›› 2021, Vol. 34 ›› Issue (1): 43-49.doi: 10.16180/j.cnki.issn1007-7820.2021.01.008
Previous Articles Next Articles
ZHAO Shiyan,XIE Zidian,DING Kangkang,CUI Hanqing
Received:
2019-10-30
Online:
2021-01-15
Published:
2021-01-22
Supported by:
CLC Number:
ZHAO Shiyan, XIE Zidian, DING Kangkang, CUI Hanqing. Particle Swarm Optimization BP-PID of Rotor Variable Frequency Speed in Mine Hoisting System[J].Electronic Science and Technology, 2021, 34(1): 43-49.
[1] | 李瑾. 矿井提升机双馈转子变频调速系统设计[J]. 煤矿机械, 2016,37(1):35-37. |
Li Jin. Design of doubly-fed rotor variable frequency speed regulation system of mine hoist[J]. Coal Mine Machinery, 2016,37(1):35-37. | |
[2] | 程国栋, 王华平, 夏晶晶. 高压绕线电动机转子变频调速技术研究[J]. 工矿自动化, 2018,44(8):81-86. |
Cheng Guodong, Wang Huaping, Xia Jingjing. Research on rotor-side frequency conversion speed regulation technology for high voltage wound-rotor motor[J]. Industry and Mine Automation, 2018,44(8):81-86. | |
[3] | 周德华. 矿用绕线式异步电机转子变频矢量控制系统研究[J]. 煤炭技术, 2019,38(1):158-160. |
Zhou Dehua. Study on variable-frequency speed vector control system of wound-rotor induction motor[J]. Coal Technology, 2019,38(1):158-160. | |
[4] | 王晓晨, 李春满. 矿井提升机双馈电机的直接转矩控制[J]. 煤矿机械, 2016,37(2):12-15. |
Wang Xiaochen, Li Chunman. Direct torque control of double fed motor used in mine hoist[J]. Coal Mine Machinery, 2016,37(2):12-15. | |
[5] | 李孟秋, 杨茂骑, 任修勇, 等. 基于BP 神经网络的开关磁阻电机直接转矩控制系统及实现[J]. 电力系统及其自动化学报, 2017,29(1):52-57. |
Li Mengqiu, Yang Maoqi, Ren Xiuyong, et al. Direct torque control system of switched reluctance motor based on BP neural network and its implementation[J]. Proceedings of the CSU-EPSA, 2017,29(1):52-57. | |
[6] | 吉升阳, 汪旭东, 许孝卓, 等. 基于滑模控制的永磁同步电机直接转矩控制研究[J]. 电子科技, 2019,32(7):1-5. |
Ji Shengyang, Wang Xudong, Xu Xiaozhuo, et al. Research on direct torque control of permanent magnet synchronous motor based on sliding mode control[J]. Electronic Science and Technology, 2019,32(7):1-5. | |
[7] | 王亮, 王旭红. 基于小波神经网络的感应电机直接转矩控制[J]. 电力科学与工程, 2015,31(12):9-15. |
Wang Liang, Wang Xuhong. Direct torque control of induction motor based on wavelet neural network[J]. Electric Power Science and Engineering, 2015,31(12):9-15. | |
[8] | 孙亮. 采用改进神经网络PID控制的车辆悬架振动仿真研究[J]. 井冈山大学学报, 2019,40(4):67-71. |
Sun Liang. Research on vehicle suspension vibration simulation using improved neural network PID control[J]. Journal of Jinggangshan University (Natural Science), 2019,40(4):67-71. | |
[9] | Abderrahim Z, Sabir M, Abdelghani H. A new improved DTC of doubly fed induction machine using GA-based PI controller[J]. Ain Shams Engineering Journal, 2018,9:1877-1885. |
[10] | 杜美君, 张伟, 谢亚莲. 基于粒子群算法的 PID 控制器参数优化[J]. 电子科技, 2019,32(6):7-11. |
Du Meijun, Zhang Wei, Xie Yalian. Particle swarm optimization based PID controller parameter optimization[J]. Electronic Science and Technology, 2019,32(6):7-11. | |
[11] | 王莉, 张紫烨, 郭晓东, 等. 基于粒子群优化 BP 神经网络的心电信号分类方法[J]. 自动化与仪表, 2019,34(9):84-87. |
Wang Li, Zhang Ziye, Guo Xiaodong, et al. Electrocardiographic signal classification method based on particle swarm optimization BP neural network[J]. Automation and Instrumentation, 2019,34(9):84-87. | |
[12] | 欧青立, 张磊, 邓鹏, 等. 粒子群优化BP神经网络PID控制注塑机液压系统[J]. 应用科技, 2018,45(4):50-55. |
Ou Liqing, Zhang Lei, Deng Peng, et al. Particle swarm optimization BP neural network PID control hydraulic system of injection molding machine[J]. Applied Science and Technology, 2018,45(4):50-55. | |
[13] | 黄璇, 郭立红, 李姜, 等. 改进粒子群优化BP神经网络的目标威胁估计[J]. 吉林大学学报(工学版), 2017,47(3):996-1002. |
Huang Xuan, Guo Lihong, Li Jing, et al. Target threat assessment based on BP neural network optimized by modified particle swarm optimization[J]. Journal of Jilin University (Engineering and Technology Edition), 2017,47(3):996-1002. | |
[14] | 王雪松, 许爱德, 赵中林, 等. 粒子群优化递归神经网络的SRM磁链观测器[J]. 电气工程学报, 2017,12(10):1-8. |
Wang Xuesong, Xu Aide, Zhao Zhonglin, et al. Stator flux observer of SRM based on particle swarm optimized recurrent neural network[J]. Journal of Electrical Engineering, 2017,12(10):1-8. | |
[15] | 贺婷婷, 陆军, 丁进良, 等. 原油总碳含量的粒子群优化集成神经网络预测模型[J]. 控制理论与应用, 2019,36(2):192-198. |
He Tingting, Lu Jun, Ding Jinliang, et al. Prediction model of total carbon content of crude oil using ensemble random weights neural network optimized by particle swarm optimization[J]. Control Theory and Applications, 2019,36(2):192-198. | |
[16] | 侯雪峰, 张九根, 梁星. 粒子群优化神经网络PID控制在湿法烟气脱硫[J]. 煤炭技术, 2018,37(4):327-330. |
Hou Xuefeng, Zhang Jiugen, Liang Xing. Particle swarm optimization PID neural network application in wet flue gas desulfurization[J]. Coal Technology, 2018,37(4):327-330. | |
[17] | 王茂林, 叶小红, 王洪光, 等. 液压系统中粒子群优化神经网络权值的控制算法[J]. 应用科技, 2014,41(3):51-54. |
Wang Maolin, Xie Xiaohong, Wang Hongguang, et al. Control algorithm based on particle swarm optimization neural network weights in hydraulic system[J]. Applied Science and Technology, 2014,41(3):51-54. |
[1] | CHU Ping,NI Wei. Design of FPGA-Based SqueezeNet Inference Accelerator [J]. Electronic Science and Technology, 2022, 35(2): 20-26. |
[2] | LI Hui,WANG Yicheng. CNNCIFG-Attention Model for Text Sentiment Classifcation [J]. Electronic Science and Technology, 2022, 35(2): 46-51. |
[3] | LU Wei,LIU Xiang,XUE Mian. Siamese Network Binocular Stereo Matching Based on Super-Pixel Segmentation [J]. Electronic Science and Technology, 2021, 34(9): 73-78. |
[4] | ZHAN Yinwei,ZHU Baiwan,YANG Zhuo. Research and Application of Vehicle Face Recognition Algorithm [J]. Electronic Science and Technology, 2021, 34(8): 1-7. |
[5] | LIAO Luming,ZHANG Wei. Batch Mixed Training Traffic Sign Recognition Based on Improved VGG16 Network [J]. Electronic Science and Technology, 2021, 34(8): 8-13. |
[6] | SI Mingming,CHEN Wei,HU Chunyan,YIN Zhong. Fundus Blood Vessel Image Segmentation Combining Resnet50 and U-Net [J]. Electronic Science and Technology, 2021, 34(8): 19-24. |
[7] | MENG Xiaojiao,ZHANG Shiwei,LI Xiaojian,LI Minyue,SONG Bingxin,LU Hongmin. An Evaluation Method of Vehicle-Mounted Communication Equipment Performance Based on BP Neural Network [J]. Electronic Science and Technology, 2021, 34(5): 24-28. |
[8] | ZHANG Shisen,SUN Xiankun,YIN Ling,LI Shixi. Design of Text Title Generation Prototype System Based on Neural Network [J]. Electronic Science and Technology, 2021, 34(5): 35-41. |
[9] | GU Wei,LI Feifei,CHEN Qiu. Pedestrian Detection Algorithm Based on Multiple Feature Fusion [J]. Electronic Science and Technology, 2021, 34(5): 29-34. |
[10] | XUE Yongjie,JU Zhiyong. Fish Recognition Algorithm Based on Improved AlexNet [J]. Electronic Science and Technology, 2021, 34(4): 12-17. |
[11] | DOU Zhengli,WANG Yagang. Modeling of Combustion Chamber Temperature Model of Combined Cycle Unit Based on Elman Neural Network [J]. Electronic Science and Technology, 2021, 34(3): 60-64. |
[12] | ZHU Bin,LIU Zilong. Image Classification Method Using Convolutional Neural Network Based on New Initial Module [J]. Electronic Science and Technology, 2021, 34(2): 52-56. |
[13] | ZHOU Xiaobo,ZOU Renling,LU Xuhua,WANG Haibin,ZHANG Junxiang. Research Progress of Surface Electromyography Signal Classifier Based on Artificial Neural Network [J]. Electronic Science and Technology, 2021, 34(2): 62-67. |
[14] | YAN Chao,SUN Zhanquan,TIAN Engang,ZHAO Yangyang,FAN Xiaoyan. Research Progress of Medical Image Segmentation Based on Deep Learning [J]. Electronic Science and Technology, 2021, 34(2): 7-11. |
[15] | HE Zhonglin,ZHOU Ping. Research on Sorting of Retired Lithium Battery Based on Radial Basis Function Neural Network [J]. Electronic Science and Technology, 2021, 34(2): 38-44. |
|