Journal of Xidian University ›› 2022, Vol. 49 ›› Issue (2): 155-163.doi: 10.19665/j.issn1001-2400.2022.02.018
• Computer Science and Technology & Cyberspace Security • Previous Articles Next Articles
WANG Yong(),JIN Weizhao(),FENG Wei(),QUAN Yinghui()
Received:
2020-08-15
Online:
2022-04-20
Published:
2022-05-31
Contact:
Wei FENG
E-mail:ywangphd@xidian.edu.cn;jin_weizhao@163.com;wfeng@xidian.edu.cn;yhquan@mail.xidian.edu.cn
CLC Number:
WANG Yong,JIN Weizhao,FENG Wei,QUAN Yinghui. Improved violent behavior detection method for the R(2+1)D network[J].Journal of Xidian University, 2022, 49(2): 155-163.
[1] | GIANNAKOPOULOS T, KOSMOPOULOS D, ARISTIDOU A, et al. Violence Content Classification Using Audio Features[C]// Hellenic Conference on Artificial Intelligence.Heidelberg:Springer, 2006:502-507. |
[2] | LIN J, WANG W. Weakly-Supervised Violence Detection in Movies with Audio and Video Based Co-Training[C]// Pacific-Rim Conference on Multimedia.Heidelberg:Springer, 2009:930-935. |
[3] |
ZHANG T, YANG Z, JIA W, et al. A New Method for Violence Detection in Surveillance Scenes[J]. Multimedia Tools and Applications, 2016, 75(12):7327-7349.
doi: 10.1007/s11042-015-2648-8 |
[4] |
SENST T, EISELEIN V, KUHN A, et al. Crowd Violence Detection Using Global Motion-Compensated Lagrangian Features and Scale-Sensitive Video-Level Representation[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(12):2945-2956.
doi: 10.1109/TIFS.2017.2725820 |
[5] | ZHOU P, DING Q, LUO H, et al. Violence Detection in Surveillance Video Using Low-Level Features[J]. PLoS ONE, 2018, 13(10):0203668. |
[6] |
SAMUEL D J R, FNIL E, MANOGARAN G, et al. Real Time Violence Detection Framework for Football Stadium Comprising of Big Data Analysis and Deep Learning through Bidirectional LSTM[J]. Computer Networks, 2019, 151:191-200.
doi: 10.1016/j.comnet.2019.01.028 |
[7] |
MAHMOODI J, SALAJEGHE A. A Classification Method Based on Optical Flow for Violence Detection[J]. Expert Systems with Applications, 2019, 127:121-127.
doi: 10.1016/j.eswa.2019.02.032 |
[8] |
DEEPAK K, VIGNESH L K P, CHANDRAKALA S. Autocorrelation of Gradients Based Violence Detection in Surveillance Videos[J]. ICT Express, 2020, 6(3):155-159.
doi: 10.1016/j.icte.2020.04.014 |
[9] | DONG Z, QIN J, WANG Y. Multi-Stream Deep Networks for Person to Person Violence Detection in Videos[C]// Chinese Conference on Pattern Recognition.Heidelberg:Springer, 2016:517-531. |
[10] |
ZHOU P, DING Q, LUO H, et al. Violent Interaction Detection in Video Based on Deep Learning[J]. Journal of Physics:Conference Series, 2017, 844:012044.
doi: 10.1088/1742-6596/844/1/012044 |
[11] |
LI H, WANG J, HAN J, et al. A Novel Multi-Stream Method for Violent Interaction Detection Using Deep Learning[J]. Measurement and Control, 2020, 53(5-6):796-806.
doi: 10.1177/0020294020902788 |
[12] | 周智, 朱明, KHAN Y. 基于3D-CNN的暴力行为检测[J]. 计算机系统应用, 2017, 26(12):207-211. |
ZHOU Zhi, ZHU Ming, KHAN Yahya. Violence Behavior Detection Based on 3D-CNN[J]. Computer Systems & Applications, 2017, 26(12):207-211. | |
[13] | TRAN D, WANG H, TORRESANI L, et al. A Closer Look at Spatiotemporal Convolutions for Action Recognition[C]// 2018 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2018:6450-6459. |
[14] | HE T, ZHANG Z, ZHANG H, et al. Bag of Tricks for Image Classification with Convolutional Neural Networks[C]// 2019 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2019:558-567. |
[1] | GAO Jie,HUO Zhiyong. Algorithmfor image inpainting in generative adversarial networks based on gated convolution [J]. Journal of Xidian University, 2022, 49(1): 216-224. |
[2] | ZHANG Yan,WANG Xiangyu,ZHANG Zhongwei,SUN Yemei,LIU Shudong. Boundary-aware network for building extraction from remote sensing images [J]. Journal of Xidian University, 2022, 49(1): 236-244. |
[3] | LIU Jiawei,ZHANG Wenhui,KOU Xiaoli,LI Yanni. Harnessing adversarial examples via input denoising and hidden information restoring [J]. Journal of Xidian University, 2021, 48(6): 23-31. |
[4] | SONG Jianfeng,MIAO Qiguang,WANG Chongxiao,XU Hao,YANG Jin. Multi-scale single object tracking based on the attention mechanism [J]. Journal of Xidian University, 2021, 48(5): 110-116. |
[5] | LI Peng,FENG Cunqian,XU Xuguang,TANG Zixiang. Ballistic target fretting classification network based on Bayesian optimization [J]. Journal of Xidian University, 2021, 48(5): 139-148. |
[6] | ZHANG Yuhao,CHENG Peitao,ZHANG Shuhao,WANG Xiumei. Lightweight image super-resolution with the adaptive weight learning network [J]. Journal of Xidian University, 2021, 48(5): 15-22. |
[7] | YAN Jia,CAO Yudong,REN Jiaxing,CHEN Donghao,LI Xiaohui. Deep asymmetric compression Hashing algorithm [J]. Journal of Xidian University, 2021, 48(5): 212-221. |
[8] | NING Yang,DU Jianchao,HAN Shuo,YANG Chuankai. Fire segmentation based on the improved DeeplabV3+ and the analytical method for fire development [J]. Journal of Xidian University, 2021, 48(5): 38-46. |
[9] | ZHOU Peng,YANG Jun. Semantic segmentation of remote sensing images based on neural architecture search [J]. Journal of Xidian University, 2021, 48(5): 47-57. |
[10] | QI Yanjun,KONG Yueping,WANG Jiajing,ZHU Xudong. Gait recognition method combining LSTM and CNN [J]. Journal of Xidian University, 2021, 48(5): 78-85. |
[11] | ZHAN Keyu,SUN Yue,LI Ying. Video super-resolution based on multi-scale 3D convolution [J]. Journal of Xidian University, 2021, 48(5): 8-14. |
[12] | HUI Haisheng,ZHANG Xueying,WU Zelin,LI Fenglian. Method for stroke lesion segmentation using the primary-auxiliary path attention compensation network [J]. Journal of Xidian University, 2021, 48(4): 200-208. |
[13] | SUN Haojie,LI Miaoyu,ZHANG Panpan,XU Pengfei. Self-supervised facial asymmetry learning for automatic evaluation of facial paralysis [J]. Journal of Xidian University, 2021, 48(3): 115-122. |
[14] | ZHANG Hua,GAO Haoran,YANG Xingguo,LI Wenmin,GAO Fei,WEN Qiaoyan. TargetedFool:an algorithm for achieving targeted attacks [J]. Journal of Xidian University, 2021, 48(1): 149-159. |
[15] | YANG Hongyu,ZENG Renyun. Method for assessment of network security situation with deep learning [J]. Journal of Xidian University, 2021, 48(1): 183-190. |
|