电子科技 ›› 2019, Vol. 32 ›› Issue (1): 72-75.doi: 10.16180/j.cnki.issn1007-7820.2019.01.0015

• • 上一篇    下一篇

压缩深层神经网络隐藏层维度对其分类性能的影响

成凌飞1,贺扬2,张培玲1,李艳2   

  1. 1. 河南理工大学 物理与电子信息学院,河南 焦作 454000
    2. 河南理工大学 电气工程与自动化学院,河南 焦作 454000
  • 收稿日期:2017-12-19 出版日期:2019-01-15 发布日期:2018-12-29
  • 作者简介:成凌飞(1971-),男,博士,教授。研究方向:矿井通信及监控。|贺扬(1990-),男,硕士研究生。研究方向:通信技术与信号处理。
  • 基金资助:
    国家自然科学基金(61501175);河南省教育厅科学技术研究重点项目(15A510008);河南理工大学博士基金(B2015-33)

Classification Performance of Compressing Dimensionality of Hidden Layer of Deep Neural Network

CHENG Lingfei1,HE Yang2,ZHANG Peiling1,LI Yan2   

  1. 1. School of Physics and Electronic Information,Henan Polytechnic University,Jiaozuo 454000,China
    2. School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo 454000,China
  • Received:2017-12-19 Online:2019-01-15 Published:2018-12-29
  • Supported by:
    National Natural Science Foundation of China(61501175);Key Project of Science and Technology Research of Henan Educational Committee(15A510008);Doctoral Fund of Henan Polytechnic University(B2015-33)

摘要:

为了使深层神经网络具有更好的泛化能力、少量训练时间的性能。文中汲取压缩神经网络的思想,通过将深层神经网络的输入层与隐藏层按照不同的比例将隐藏层的维度进行压缩,并在传统压缩深层神经网络的基础上,在其顶层添加一个分类层,使深层神经网络拥有分类的能力。实验将构建的深层神经网络应用于MNIST手写数据集的分类测试,结果表明,经过适当压缩的深层神经网络比未被压缩的深层神经网络具有更好的分类效果,而且节省了大量的训练时间。

关键词: 深层神经网络, 分类, 压缩比例, 泛化能力, 训练时间, 深度学习

Abstract:

In order to make deep neural network get better generalization property and reduce training time. Inspired by compressed neural network, compressing dimension of the hidden layers according to different compression ratio, and based on the traditional compressed deep neural network, adding classification layer to the top layer, then deep neural network gets the ability of classification. Experiments performed on MNIST handwritten dataset show that using properly compress deep neural network instead of uncompressed network would get better classification results, and saving lots of training time.

Key words: deep neural network, classification, compression ratio, generalization property, training time, deep learning

中图分类号: 

  • TP183