电子科技 ›› 2024, Vol. 37 ›› Issue (6): 61-68.doi: 10.16180/j.cnki.issn1007-7820.2024.06.008

• 研究论文 • 上一篇    下一篇

多路并行多尺度特征复用的遥感图像超分辨率

赵旭, 胡德敏   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2023-01-04 出版日期:2024-06-15 发布日期:2024-06-20
  • 作者简介:赵旭(1996-),男,硕士研究生。研究方向:图像处理。
    胡德敏(1963-),男,博士,副教授。研究方向:计算机网络、分布式计算。
  • 基金资助:
    国家自然科学基金(61170277);国家自然科学基金(61472256);上海市教委科研创新重点项目(12zz137);上海市一流学科建设项目(S1201YLXK)

Multi-Path Parallel Multi-Scale Feature Reuse for Remote Sensing Image Super-Resolution

ZHAO Xu, HU Demin   

  1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2023-01-04 Online:2024-06-15 Published:2024-06-20
  • Supported by:
    National Natural Science Foundation of China(61170277);National Natural Science Foundation of China(61472256);Key Project of Scientific Research and Innovation of Shanghai Municipal Education Commission(12zz137);Shanghai First Class Discipline Construction Project(S1201YLXK)

摘要:

遥感图像内部物体尺寸小、分布不均匀、耦合程度高,针对目前遥感图像超分辨率模型特征提取信息单一且利用不足的现状,文中提出一种多路并行多尺度特征复用网络模型以改进图像重建的性能。该模型使用局部特征级联和全局特征融合的结构融合多个网络残差块提取的特征信息,其中每个残差块由两个多尺度卷积单元串行连接。多尺度卷积单元通过对特征信息进行交叉融合,构建多路并行的分支提取图像特征。同时引入短跳跃连接加强不同分支之间的特征复用,通过长跳跃连接加强网络不同深度的特征融合。当放大因子为4时,在两个测试集上该模型的峰值信噪比分别为29.653 1 dB、29.037 4 dB,相对于其他模型的测试结果具有明显提升,因此所提模型在遥感图像超分辨率重建上具有较好的效果。

关键词: 遥感图像, 超分辨率, 多路径, 并行提取, 多尺度, 特征复用, 跳跃连接, 卷积神经网络

Abstract:

Objects in remote sensing images are small in size, unevenly distributed, and highly coupled. In view of the current situation that the feature extraction information of remote sensing image super-resolution models is single and underutilized, this study proposes a multi-path parallel multi-scale feature reuse network model to improve performance of image reconstruction. The model fuses feature information extracted from multiple network residual blocks using a structure of local feature cascade and global feature fusion, where each residual block is serially connected by two multi-scale convolutional units. The multi-scale convolution units construct multiple branches to extract image features in parallel through cross-fusion of feature information. At the same time, short skip connections are introduced to strengthen feature reuse between different branches, and long skip connections are introduced to strengthen feature fusion at different depths of the network. When the amplification factor is 4, the peak signal-to-noise ratios of the model on the two test sets are 29.653 1 dB and 29.037 4 dB respectively, and they are significantly improved compared with the test results of other models. Therefore, the proposed model has a good effect on super-resolution reconstruction of remote sensing images.

Key words: remote sensing image, super-resolution, multi-path, parallel extraction, multi-scale, feature reuse, skip connection, convolutional neural network

中图分类号: 

  • TP391