[1] |
赵晋, 李菲菲. 一种基于GAN的轻量级水墨画风格迁移模型[J]. 电子科技, 2023, 36(2):81-86.
|
|
Zhao Jin, Li Feifei. A GAN-based lightweight style transfer model for ink painting[J]. Electronic Science and Technology, 2023, 36(2):81-86.
|
[2] |
左斌, 李菲菲. 基于注意力机制和Inf-Net的新冠肺炎图像分割方法[J]. 电子科技, 2023, 36(2):22-28.
|
|
Zuo Bin, Li Feifei. An effective segmentation method for COVID-19 CT image based on attention mechanism and Inf-Net[J]. Electronic Science and Technology, 2023, 36(2):22-28.
|
[3] |
Koch G, Zemel R, Salakhutdinov R. Siamese neural netw-orks for one-shot image recognition[C]. Lille: ICML Deep Learning Workshop, 2015:956-963.
|
[4] |
Snell J, Swersky K, Zemel R. Prototypical networks for few-shot learning[J]. Advances in Neural Information Processing Systems, 2017, 31(2):4080-4090.
|
[5] |
Vinyals O, Blundell C, Lillicrap T, et al. Matching networks for one shot learning[J]. Advances in Neural Information Processing Systems, 2016, 30(2):3637-3645.
|
[6] |
Sung F, Yang Y, Zhang L, et al. Learning to compare:Relation network for few-shot learning[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:1199-1208.
|
[7] |
Kang B, Liu Z, Wang X, et al. Few-shot object detection via feature reweighting[C]. Seoul: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019:8420-8429.
|
[8] |
Yan X, Chen Z, Xu A, et al. Meta R-CNN:Towards general solver for instance-level low-shot learning[C]. Seoul: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019:9577-9586.
|
[9] |
Perez-Rua J M, Zhu X, Hospedales T M, et al. Incrementalfew-shot object detection[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020:13846-13855.
|
[10] |
Xiao Y, Marlet R. Few-shot object detection and viewpoint estimation for objects in the wild[C]. Online: Proceedings of the European Conference on Computer Vision, 2020:192-210.
|
[11] |
Fan Q, Zhuo W, Tang C K, et al. Few-shot object detection with attention-RPN and multirelation detector[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020:4013-4022.
|
[12] |
Redmon J, Farhadi A. YOLO9000:Better,faster,stronger[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:7263-7271.
|
[13] |
Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2015, 28(2):91-99.
|
[14] |
Zhou X, Wang D, Krähenbühl P. Objects as points[EB/OL].(2019-04-16) [2023-03-13] https://arxiv.org/abs/1904.07850.
|
[15] |
Wang X, Girshick R, Gupta A, et al. Non-local neural networks[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:7794-7803.
|
[16] |
Chen T I, Liu Y C, Su H T, et al. Dual-awareness attent-ion for few-shot object detection[J]. IEEE Transactions on Multimedia, 2021, 25(7):291-301.
|
[17] |
Chen H, Wang Y, Wang G, et al. Lstd:A low-shot transfer detector for object detection[C]. New Orleans: Proceedings of the Conference on Artificial Intelligence, 2018:2836-2843.
|
[18] |
Wu J, Liu S, Huang D, et al. Multiscale positive sample refinement for few-shot object detection[C]. Online: Proceedings of the European Conference on Computer Vision, 2020:456-472.
|
[19] |
Wang X, Huang T E, Darrell T, et al. Frustratingly simple few-shot object detection[C]. Vienna: Proceedings of the International Conference on Machine Learning, 2020:9861-9870.
|
[20] |
Han G, Huang S, Ma J, et al. Meta faster R-CNN:Towards accurate few-shot object detection with attentive feature alignment[C]. Vancouver: Proceedings of the Conference on Artificial Intelligence, 2022, 36(1):780-789.
|
[21] |
Lee H, Lee M, Kwak N. Few-shot object detection by attending to per-sample-prototype[C]. Waikoloa: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022:2445-2454.
|
[22] |
Li B, Yang B, Liu C, et al. Beyond max-margin:Class margin equilibrium for few-shot object detection[C]. Online: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021:7363-7372.
|
[23] |
Fan Z, Yu J G, Liang Z, et al. FGN:Fully guided network for few-shot instance segmentation[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020:9172-9181.
|