›› 2015, Vol. 28 ›› Issue (12): 32-.

• 论文 • 上一篇    下一篇

基于遗传算法的支持向量机分类算法

张东东   

  1. (上海理工大学 光电信息与计算机工程学院,上海 200093)
  • 出版日期:2015-12-15 发布日期:2015-12-15
  • 作者简介:张东东(1991—),男,硕士研究生。研究方向:故障诊断,图像识别。E-mail:156848686@qq.com

Support Vector Machine Classification Algorithm Based on Genetic Algorithms

ZHANG Dongdong   

  1. (School of Optical-Electrical and Computer Engineering,Shanghai University for Science and Technology,Shanghai 200093,China)
  • Online:2015-12-15 Published:2015-12-15

摘要:

针对现有部分支持向量机在多类分类过程中存在的数据不均衡性、对算法结构依赖性强的问题,提出一种新的基于遗传算法的支持向量机多类分类算法。以遗传算法中的交叉作为支持向量机中类的选择,以变异改善分类过程中的纠错能力,以适应度函数作为最优分类结果的确定。在不同特性的样本集上进行仿真测试,结果证明,该算法在类数较多的情况下,有更好的数据均衡性,在分类速度及准确度上均有一定的优越性。

关键词: 遗传算法, 支持向量机, 多类分类

Abstract:

In view of the some existing SVMS issues such as data disproportion and strong dependence on the algorithm structure in the process of multi-classification,a new SVM classification algorithm based on genetic algorithms is proposed.The new algorithm considers the crossover in the genetic algorithm as the choice of divisions in the SVM,improves the correction capability during classification by mutation and bases the optimal classification results on the fitness function.Simulation and tests are performed on sample sets with different characteristics and the result shows the algorithm has superiority in data balance,speed and accuracy of classification in the case of multi-classification.

Key words: genetic algorithm;SVM;multi classification

中图分类号: 

  • TP301.6