[1]Martin Langkvist,Lars Karlsson,Amy Loutfi.A review of unsupervised feature learning and deep learning for time-series modeling[J].Pattern Recognition Letter,2014,42(6):11-24.
[2]Yelin Kim,Honglak Lee,Emily Mower Provost.Deep learning for robust feature generation audiovisual emotion recognition[J].IEEE Transactions on Networks,2013,13(6):978-984.
[3]Hinton G E,Srivastava N,Krizhevsky A,et al.Improving neural networks by preventing co-adaptation of feature detectors[J].IEEE Transactions on Networks,2013,13(2):266-269.
[4]Geoffrey Hinton.A fast learning algorithm for deep belief nets[J].Neural Compute,2006,18(7):1527-1554.
[5]Atsalakis G S,Valavanis K P.Surveying
stock market forecasting techniques-part II:softcomputing methods[J].Expert Systems with Applications,2009,36(2):5932-5941.
[6]Lee H,Largman Y,Pham P,et al,Unsupervised feature learning for audio classification using convolutional deep belief network[J].Advertisement Neural Information Process,2009,22(2):1096-1104.
[7]孙志军,薛磊,许阳明,等.深度学习研究综述[J].计算机应用研究,2012,29(8):153-158
[8]李海峰,李纯果.深度学习结构和算法计较分析[J].河北大学学报,2012,32(5):230-237.
[9]吕刚,郝平,盛建荣.一种改进的深度神经网络在小图像分类中的应用[J].计算机应用与软件,2014,31(4):12-17.
[10]徐珊珊,刘应安.基于卷积神经网络的木材缺陷识别[J].山东大学学报,2013,43(2):108-113. |