›› 2015, Vol. 28 ›› Issue (5): 20-.

• 论文 • 上一篇    下一篇

一种改进的BP神经网络在手写体识别上的应用

薛皓天,杨晶东,谈凯德   

  1. (上海理工大学 控制工程系,上海 200093)
  • 出版日期:2015-05-15 发布日期:2015-05-19
  • 作者简介:薛皓天(1990—),男,硕士研究生。研究方向:人工智能与专家系统。Email:460016536@qq.com。杨晶东(1973—),男,博士。研究方向:移动机器人。谈凯德(1991—),男,硕士研究生。研究方向:控制工程与控制理论。

Application of an Improved BP Neural Network in Handwriting Recognition

XUE Haotian,YANG Jingdong,TAN Kaide   

  1. (Department of Control Engineering,University of Shanghai for Science & Technology,Shanghai 200093,China)
  • Online:2015-05-15 Published:2015-05-19

摘要:

传统的浅层学习神经网络虽然结构简单,算法速度快,但错误率较高,且容易陷入局部最小。文中采用深度结构的深度置信网,优化基于传统BP神经网的初始值,以获得较好的检测结果,并利用Dropout技术改进BP网络隐层单元,获得较快的运算速度。实验证明,经过DBN和Dropout改善后的网络错误率有明显降低,并且算法实时性得到了一定改善。

关键词: 深度置信网, 神经网络, Dropout, 深度学习

Abstract:

Traditional shadow learning has a simple structure and fast algorithm but a relatively high error rate,and is easy to step into the localminimization.This article discusses a deep structure call Deep Belief Network (DBN),which is used to optimize the initial value of the traditional BP to get a better testing result.And we use the dropout skill to modify the hidden unit of BP to get a fast training speed.The experiments in the article show that using DBN and dropout to modify the BP can decrease the error rate and improve the realtimeness.

Key words: deep belief network;neural network;Dropout;deep learning

中图分类号: 

  • TP301.6