›› 2017, Vol. 30 ›› Issue (4): 110-.

• 论文 • 上一篇    下一篇

基于SMO-SVM的丝杠表面磨削质量预测

王蓝博,李郝林,迟玉伦   

  1. (上海理工大学 机械工程学院,上海 200093)
  • 出版日期:2017-04-15 发布日期:2017-04-11
  • 作者简介:王蓝博(1991-),男,硕士研究生。研究方向:精密加工技术。李郝林(1961-),男,博士,教授,博士生导师。研究方向:数控技术精密检测与智能控制。
  • 基金资助:

    上海市科学技术委员会科研基金资助项目(15110502300)

Prediction of Surface Grinding Quality Based on SMO-SVM

WANG Lanbo,LI Haolin,CHI Yulun   

  1. (School of Mechanical Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Online:2017-04-15 Published:2017-04-11

摘要:

针对滚珠丝杠磨削过程在线监测困难的问题,使用支持向量机建立智能模型。模型本身针对颤振分类和粗糙度预测的不同问题,选用基于串行优化算法的支持向量分类机和支持向量回归机,并使用交叉验证法对模型参数进行优化。基于滚珠丝杠表面波纹度理论和粗糙度理论,对磨削过程中的振动信号进行特征提取,结合加工参数作为模型输入,先进行颤振的判别,在判断未颤振的情况下对表面质量进行预测。实验结果表明,该模型可以对颤振分类及粗糙度预测进行较好的在线监测。

关键词: 滚珠丝杠, 支持向量机, 串行优化算法, 振动信号

Abstract:

Aiming at the difficulty of on - line monitoring of the grinding process, the support vector machine was used to build the intelligent model. Based on the surface waviness and roughness theory of ball screw, extracted the vibration signal in the grinding process combining with machining parameter are taken as the model input. The support vector machine and support vector regression machine based on serial optimization algorithm are selected for the different problems of flutter classification and roughness prediction. In addition the model parameters are optimized by cross validation. Judge the flutter at first, predicted surface quality in judging the case of non-flutter. The experimental results show that the model can better monitor the flutter classification and roughness prediction.

Key words: ball screw;support vector machine;serial optimization algorithm;vibration signal

中图分类号: 

  • TG 333