电子科技 ›› 2019, Vol. 32 ›› Issue (2): 9-13.doi: 10.16180/j.cnki.issn1007-7820.2019.02.003

• • 上一篇    下一篇

基于智能算法的无人机航迹规划

岳秀,张伟   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2018-01-30 出版日期:2019-02-15 发布日期:2019-01-02
  • 作者简介:岳秀(1992-),女,硕士研究生。研究方向:控制理论与控制工程等。
  • 基金资助:
    国家自然科学基金(11502145)

UAV Path Planning Based on Intelligent Algorithm

YUE Xiu,ZHANG Wei   

  1. School of Optical Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2018-01-30 Online:2019-02-15 Published:2019-01-02
  • Supported by:
    National Natural Science Foundation of China(11502145)

摘要:

文中针对多无人机在复杂约束条件下编队协同、巡航范围内覆盖率高的问题,基于K-means算法和Hop-field神经网络算法实现了一种无人机整体航迹规划方法。对任务要求的禁飞区域、目标区域建立任务区域的数字地图模型,进行模型分解合理的将有效区域分解为多个子目标点。随后采用K-means算法对无人机巡航的目标点进行聚类,并结合Hop-field神经网络算法对同类子目标点进行无人机航迹规划。以无人机在抗震救灾中的真实数据为实例,通过仿真实现了巡航区域90%的覆盖率,验证了文中方法的鲁棒性和有效性。

关键词: 无人机, 编队协同, 航迹规划, 模型区域分解技术, K-means算法, Hop-field神经网络算法, 覆盖率

Abstract:

This paper proposed a new method for UAV route planning based on K-means algorithm and Hop-field neural network algorithm, which dealt with the formation of multi UAVs under complex constraints and high coverage cruise. A digital map model of the task area was established for the no-fly zone, the target zone and the valid zone required by the mission and the model decomposition was performed to reasonably decompose the effective area into multiple sub-target points. Then the K-means algorithm was used to cluster the target points of UAV cruise, and the Hop-field neural network algorithm was used to carry out UAV trajectory planning for similar sub-target points. Taking the real data of UAV in earthquake relief as an example, the coverage ratio of 90% of the cruise area was simulated, which proved the robustness and effectiveness of the proposed method.

Key words: UAV, formation teamwork, path planning, model area decomposition technique, K means algorithm, Hop field neural network algorithm, coverage ratio

中图分类号: 

  • TP29