电子科技 ›› 2019, Vol. 32 ›› Issue (5): 92-95.doi: 10.16180/j.cnki.issn1007-7820.2019.05.018

• • 上一篇    

基于径向基神经网络的粒子群表面缺陷识别算法

蓝机满   

  1. 惠州工程职业学院,广东 惠州 516023
  • 收稿日期:2018-03-18 出版日期:2019-05-15 发布日期:2019-05-06
  • 作者简介:蓝机满(1983-),男,讲师。研究方向:大数据理论及其应用技术。

Particle Swarm Optimization Surface Defect Recognition Algorithm Based on Radial Basis Neural Network

LAN Jiman   

  1. Huizhou Engineering Vocational College, Huizhou 516001, China
  • Received:2018-03-18 Online:2019-05-15 Published:2019-05-06

摘要:

金属部件表面缺陷识别问题是模式识别领域的研究热点,高效、可靠的表面缺陷识别方法能够有效提高生产效率、维护生产安全。针对这一问题,文中提出了一种利用径向基(RBF)神经网络和粒子群优化(PSO)算法相结合的表面缺陷识别算法。采用PSO算法确定和改进RBF神经网络的权值参数,同时对PSO算法中的惯性权重进行线性处理,有效消除了PSO算法中的最优解局部振荡现象。针对金属部件表面常见的几种缺陷对RBF-PSO表面缺陷识别算法进行网络训练,并进行相应的实际测试。文中提出的RBF-PSO表面识别算法识别准确率可达96%,相比于传统的神经网络算法具有明显的性能提升。

关键词: 径向基, 粒子群, 优化算法, 表面缺陷识别

Abstract:

Surface defect recognition of metal parts is a hot topic in the field of pattern recognition. Efficient and reliable surface defect identification method can effectively improve production efficiency and maintain production safety. To solve this problem, a surface defect recognition algorithm based on radial basis function (RBF) neural network and particle swarm optimization (PSO) algorithm was proposed. The weight parameters of RBF neural network were determined and improved by PSO algorithm, and the inertia weight of PSO algorithm was processed linearly. The local oscillation of the optimal solution in PSO algorithm was effectively eliminated. The RBF-PSO surface defect recognition algorithm was trained by network aiming at several common defects on the surface of metal parts, and the corresponding actual test was carried out. The recognition accuracy of RBF-PSO surface recognition algorithm proposed in this paper could reach 96%. Compared with traditional neural network algorithm, it had obvious performance improvement.

Key words: radial basis, particle swarm optimization, optimization algorithm, surface defect recognition

中图分类号: 

  • TP394