电子科技 ›› 2020, Vol. 33 ›› Issue (5): 9-14.doi: 10.16180/j.cnki.issn1007-7820.2020.05.002

• • 上一篇    下一篇

基于PCA与SVM的焊缝缺陷信号分类方法

万东燕,许桢英,杨卿,吴梦琪   

  1. 江苏大学 机械工程学院,江苏 镇江 212013
  • 收稿日期:2019-04-04 出版日期:2020-05-15 发布日期:2020-06-02
  • 作者简介:万东燕(1992-),女,硕士研究生。研究方向:信号处理。|许桢英(1978-),女,博士,教授,博士生导师。研究方向:机器视觉理论及检测技术、光、声无损检测理论与技术、微器件精密成形及精度控制、仪器与测试精度理论。
  • 基金资助:
    国家自然科学基金(51679112)

A Method of Weld Defect Classification Based on PCA and SVM

WAN Dongyan,XU Zhenying,YANG Qing,WU Mengqi   

  1. School of Mechanical Engineering,Jiangsu University,Zhenjiang 212013,China
  • Received:2019-04-04 Online:2020-05-15 Published:2020-06-02
  • Supported by:
    National Natural Science Foundation of China(51679112)

摘要:

为保证焊接结构处于安全工作状态,文中针对焊缝缺陷的分类问题提出一种结合主成分分析和支持向量机的焊缝特征导波缺陷信号的分类方法。该方法首先以缺陷回波的稀疏重构信号为基础提取了缺陷信号的特征参数矩阵,然后利用主成分分析法对参数矩阵进行降维优化以消除冗余信息。将优化的低维特征矩阵应用于支持向量机进行分类训练,并对比不同主成分的分类效果。最后选择核函数和相关参数来提高分类器的准确率。实验结果表明,该方法能够有效地对焊缝缺陷进行分类。

关键词: 焊缝, 回波信号, 缺陷分类, 特征导波, 主成分分析, 支持向量机

Abstract:

In order to ensure that the welding structure is in safe working state, a classification method combining PCA and SVM was proposed to classify the weld feature guided wave defect signals. Firstly, based on the sparse reconstructed signal of defect echo, the feature parameter matrix of defect signal was extracted, and the dimensionality of parameter matrix was optimized by PCA to eliminate redundant information. Then, the optimized low-dimensional feature matrix was applied to SVM for classification training, and the classification effect of different principal components was compared. Kernel function and related parameters were selected to improve the accuracy of the classifier. The experimental results showed that the method could effectively classify weld defects.

Key words: weld, echo signals, defect classification, feature guided wave, PCA, SVM

中图分类号: 

  • TN911