[1] |
Zeng Y, Xu X, Fang Y, et al. Traffic sign recognition using deep convolutional networks and extreme learning machine [C].Helsinki:International Conference on Intelligent Science and Big Data, 2015.
|
[2] |
Weng Q, Mao Z, Lin J, et al. Land-use classification via extreme learning classifier based on deep convolutional features[J]. IEEE Geoscience and Remote Sensing Letters, 2017,14(5):704-708.
|
[3] |
Huang G B, Zhu Q Y, Siew C K. Extreme learning machine:theory and applications[J]. Neurocomputing, 2006,70(1-3):489-501.
doi: 10.1016/j.neucom.2005.12.126
|
[4] |
Redmon J, Divvala S, Girshick R, et al. You only look once:unified, real-time object detection [C].Las Vegas:IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[5] |
熊海朋, 陈洋洋, 陈春玮. 基于卷积神经网络的场景图像文本定位研究[J]. 电子科技, 2018,31(1):50-53.
|
|
Xiong Haipeng, Chen Yangyang, Chen Chunwei. Text localization in image based on convolutional neural network[J]. Electronic Science and Technology, 2018,31(1):50-53.
|
[6] |
王丽君, 于莲芝. 基于卷积神经网络的位置识别[J]. 电子科技, 2017,30(1):104-106.
|
|
Wang Lijun, Yu Lianzhi. Visual place recognition based on convolutional neural network[J]. Electronic Science and Technology, 2017,30(1):104-106.
|
[7] |
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2016,313(5786):504-507.
doi: 10.1126/science.1127647
pmid: 16873662
|
[8] |
Kingma D, Ba J. ADAM:a method for stochastic optimization[J]. Computer Science, 2014,26(2):358-366.
|
[9] |
白琮, 黄玲, 陈佳楠. 面向大规模图像分类深度卷积神经网络优化[J]. 软件学报, 2018,29(4):1029-1038.
|
|
Bai Cong, Huang Ling, Chen Jianan. Optimization of deep convolutional neural networks for large-scale image classification[J]. Journal of Software, 2018,29(4):1029-1038.
|
[10] |
奚雪峰, 周国栋. 面向自然语言处理的深度学习研究[J]. 自动化学报, 2016,42(10):1445-1465.
doi: 10.16383/j.aas.2016.c150682
|
|
Xi Xuefeng, Zhou Guodong. A survey on deep learning for natural language processing[J]. Acta Automatica Sinica, 2016,42(10):1445-1465.
doi: 10.16383/j.aas.2016.c150682
|
[11] |
Rong H J, Ong Y S, Tan A H, et al. A fast pruned-extreme learning machine for classification problem[J]. Neurocomputing, 2008,72(1-3):359-366.
|
[12] |
赵亮, 王晓峰. 基于深度卷积神经网络的船舶识别方法[J]. 舰船科学技术, 2016,38(15):119-123.
|
|
Zhao Liang, Wang Xiaofeng. Research on ship recognition method based on deep convolutional neural network[J]. Ship Science and Technology, 2016,38(15):119-123.
|
[13] |
Hinton G. A practical guide to training restricted boltzmann machines[J]. Momentum, 2010,9(1):926-947.
|
[14] |
张振焕, 周彩兰. 基于残差优化卷积神经网络服装分类[J]. 计算机工程与科学, 2018,40(2):354-360.
|
|
Zhang Zhenhuan, Zhou Cailan. An optimized clothing classification algorithm based on residual convolutional neural network[J]. Computer Engineering and Science, 2018,40(2):354-360.
|
[15] |
李鸣, 张鸿. 基于卷积神经网络迭代优化图像分类算法[J]. 计算机工程与设计, 2017,38(1):198-202.
|
|
Li Ming, Zhang Hong. Image classification based on convolutional neural network of iterative optimization[J]. Computer Engineering and Design, 2017,38(1):198-202.
|
[16] |
易超人, 邓燕妮. 多通道卷积神经网络图像识别方法[J]. 河南科技大学学报, 2017,38(3):41-44.
|
|
Yi Chaoren, Deng Yanni. Image recognition method of multi-channel convolutional neural networks[J]. Journal of Henan University of Science and Technology(Natural Science), 2017,38(3):41-44.
|