电子科技 ›› 2021, Vol. 34 ›› Issue (2): 52-56.doi: 10.16180/j.cnki.issn1007-7820.2021.02.009

• • 上一篇    下一篇

基于新型初始模块的卷积神经网络图像分类方法

朱斌,刘子龙   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2019-11-17 出版日期:2021-02-15 发布日期:2021-01-22
  • 作者简介:朱斌(1996-),男,硕士研究生。研究方向:图像处理。|刘子龙(1972-),男,博士,副教授。研究方向:工程控制、机器人控制、图像处理。
  • 基金资助:
    国家自然科学基金(61603255)

Image Classification Method Using Convolutional Neural Network Based on New Initial Module

ZHU Bin,LIU Zilong   

  1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology, Shanghai 200093,China
  • Received:2019-11-17 Online:2021-02-15 Published:2021-01-22
  • Supported by:
    National Natural Science Foundation of China(61603255)

摘要:

在涉及分类识别的问题中,首选方法是基于卷积神经网络的分类方法。为解决传统卷积神经网络处理能力较差、分类精度较低等问题,文中提出了一种新型的卷积神经网络图像分类模型。一方面在传统的网络模型基础上增加新型Inception模块,增强了模型的特征信息的融合,提高了特征表达的能力;另一方面通过激活函数、数据增强、批量正则化、权重初始优化以及Adadelta优化方法来改善模型的性能,提升分类准确率。通过基于新型初始模块的新型网络模型对CIFAR-10数据集上的数据进行试验,并与传统网络模型方法对比,证明改进模型能有效提升网络性能。

关键词: 卷积神经网络, 图像分类, 新型Inception模块, 数据增强, 权重初始化, Adadelta优化方法

Abstract:

Among the problems involving image classification, the classification method based on convolutional neural networks is preferred. In order to solve the problems of poor processing capacity and low classification accuracy, a new type of image classification model of convolutional neural network is proposed. The new Inception module is added on the basis of the traditional network model, which enhances the transmission of the feature information of the model and improves the ability of feature expression. Additionally, the performance of the model and the classification accuracy are improved by activation function, data enhancement, batch regularization, initial weight optimization and Adadelta optimization method. The new network model based on the new initial module is used to test the data on the CIFAR-10 data set, and compared with the traditional network model method, which proves that the modulated model effectives improves the network performance.

Key words: convolution neural network, image classification, new Inception module, data augmentation, weight initialization, Adadelta optimization method

中图分类号: 

  • TN391.41