[1] |
康晓东. 医学影像图像处理[M]. 北京: 人民卫生出版社, 2009.
|
|
Kang Xiaodong. Medical image processing[M]. Beijing: People's Medical Publishing House, 2009.
|
[2] |
Mohammad H H, Jia W J, He X J, et al. Deep learning techniques for medical image segmentation: achievements and challenges[J]. Journal of Digital Imaging, 2019,32(4):582-596.
doi: 10.1007/s10278-019-00227-x
pmid: 31144149
|
[3] |
刘宇, 陈胜. 医学图像分割方法综述[J]. 电子科技, 2017,30(8):169-172.
|
|
Liu Yu, Chen Sheng. Review of medical image segmentation method[J]. Electronic Science and Technology, 2017,30(8):169-172.
|
[4] |
Zhang L, Zhang Y. Big data analysis by infinite deep neural networks[J]. Journal of Computer Research and Development, 2016,53(1):68-79.
|
[5] |
Shen D G, Wu G R, Suk H I. Deep learning in medical image analysis[J]. Annual Review of Biomedical Engineering, 2017,19(5):221-248.
|
[6] |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [C].Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[7] |
Prathiba M, Jose D, Saranya R, et al. Automated M-elanoma recognition in dermoscopy images via very deep residual networks [C].Coimbatore:Proceedings of the First International Conference on Materials Science and Manufacturing Technology, 2019.
|
[8] |
Litjens G, Kooi T, Bejnordi B E, et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017,42(9):60-88.
doi: 10.1016/j.media.2017.07.005
|
[9] |
崔宝成. 浅析医学影像技术学-CT[J]. 世界最新医学信息文摘, 2015,15(72):111-112.
|
|
Cui Baocheng. Analysis of medical imaging technology-CT[J]. World Latest Medical Information, 2015,15(72):111-112.
|
[10] |
Niessen W J. MR brain image analysis in dementia: from quantitative imaging biomarkers to ageing brain models and imaging genetics[J]. Medical Image Analysis, 2016,33(12):107-113.
doi: 10.1016/j.media.2016.06.029
|
[11] |
Shi J, Zhou S C, Liu X, et al. Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset[J]. Neurocomputing, 2016,194(23):87-94.
doi: 10.1016/j.neucom.2016.01.074
|
[12] |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation [C].Boston:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
|
[13] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet C-lassification with deep convolutional neural networks [C]. Lake Tahoe:Proceedings of the International Conference on Neural Information Processing Systems, 2012.
|
[14] |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[J]. Medical Image Computing and Computer-Assisted Intervention,, 2015,9351(65):234-241.
|
[15] |
Milletari F, Navab N, Ahmadi S A. V-Net:fully convolutional neural networks for volumetric medical image segmentation [C].Palo Alto:Proceedings of the Fourth International Conference on 3D Vision, 2016.
|
[16] |
Zhou Z W, Tajbakhsh N, Liang J M. U-Net plus plus:a nested U-Net architecture for medical image segmentation[C].Granada:The Eighth International Workshop on Multimodal Learning for Clinical Decision Support (ML-CDS), 2018.
|
[17] |
Gu Z W, Cheng J, Fu H Z, et al. CE-Net:context encoder network for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2019,38(10):2281-2292.
doi: 10.1109/TMI.2019.2903562
pmid: 30843824
|
[18] |
Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation [C].Santiago:IEEE International Conference on Computer Vision, 2015.
|
[19] |
Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,40(12):834-848.
|
[20] |
Badrinarayanan V, Kendall A, Cipolla R. SegNet:a deep convolutional encoder decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(18):2481-2495.
|
[21] |
He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,37(9):1904-1916.
doi: 10.1109/TPAMI.2015.2389824
pmid: 26353135
|
[22] |
Cui Z P, Yang J, Qiao Y. Brain MRI segmentation with patch-based CNN approach [C].Chengdu: Proceedings of the Thirty-fifth Chinese Control Conference, 2016.
|
[23] |
Moeskops P, Viergever M A, Mendrik A M, et al. Automatic segmentation of MR brain images with a convolutional neural network[J]. IEEE Transactions on Medical Imaging, 2016,35(5):1252-1262.
doi: 10.1109/TMI.2016.2548501
pmid: 27046893
|
[24] |
Zhang W L, Li R J, Deng H T, et al. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation[J]. Neuro Image, 2015,108(25):214-224.
|
[25] |
Nie D, Wang L, Lao C J, et al. 3-D fully convolutional networks for multimodal isointense infant brain image segmentation[J]. IEEE Transactions on Cybernetics, 2018,49(3):1123-1136.
doi: 10.1109/TCYB.2018.2797905
pmid: 29994385
|
[26] |
Cheng J Z, Ni D, Chou Y H, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans[J]. Scientific Reports, 2016,6(11):244-254.
|
[27] |
Liauchuk V, Kovalev V, Kalinovsky A, et al. Examining the ability of convolutional neural networks to detect lesions in lung CT images [C].Barcelona:Medical Imaging and Augmented Reality:Computer Assisted Radiology and Surgery, 2017.
|
[28] |
Zhou J H, Ginsberg M S, Metaxas D N, et al. Automatic detection and segmentation of ground glass opacity nodules [C].Heidelberg:Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, 2006.
|
[29] |
Nasr E E, Samavi S, Karimi N, et al. Vessel extraction in X-ray angiograms using deep learning[C].Orlando: Proceedings of the Thirty-eighth International Conference of the Engineering in Medicine and Biology Society(EMBC), 2016.
|
[30] |
Wu A, Xu Z Y, Gao M C, et al. Deep vessel tracking: a generalized probabilistic approach via deep learning[C]. Prague:Proceedings of the Thirteenth International Symposium on Biomedical Imaging (ISBI), 2016.
|
[31] |
Madabhushi A, Lee G. Image analysis and machine learning in digital pathology: challenges and opportunities[J]. Medical Image Analysis, 2016,33(6):170-175.
doi: 10.1016/j.media.2016.06.037
|
[32] |
Wang S L, Yin Y L, Cao G B, et al. Hierarchical retinal blood vessel segmentation based on feature and ensemble learning[J]. Neurocomputing, 2015,149(18):708-717.
doi: 10.1016/j.neucom.2014.07.059
|