电子科技 ›› 2021, Vol. 34 ›› Issue (2): 7-11.doi: 10.16180/j.cnki.issn1007-7820.2021.02.002

• • 上一篇    下一篇

基于深度学习的医学图像分割技术研究进展

闫超,孙占全,田恩刚,赵杨洋,范小燕   

  1. 上海理工大学 光电信息与计算机工程学院,上海200093
  • 收稿日期:2019-12-03 出版日期:2021-02-15 发布日期:2021-01-22
  • 作者简介:闫超(1994-),男,硕士研究生。研究方向:深度学习医学图像分割。|孙占全(1977-),男,博士,副教授。研究方向:人工智能与医学图像处理。|田恩刚(1980-),男,博士,教授。研究方向:网络控制系统综合。
  • 基金资助:
    国家自然科学基金(61773218)

Research Progress of Medical Image Segmentation Based on Deep Learning

YAN Chao,SUN Zhanquan,TIAN Engang,ZHAO Yangyang,FAN Xiaoyan   

  1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2019-12-03 Online:2021-02-15 Published:2021-01-22
  • Supported by:
    National Natural Science Foundation of China(61773218)

摘要:

医学图像分割在临床诊断中发挥着重要作用,也是其他医学图像处理方法的基础。随着计算机硬件性能的提高,基于深度学习的图像分割技术已成为处理医学图像的有力工具,被广泛应用于各种医学图像分割任务中。文中介绍了常见的医学图像种类及其特点,对近些年涌现出的图像分割算法进行了分析和对比,部分算法已经成功应用到脑组织、肺部和血管等部位图像分割任务之中。文中还针对目前基于深度学习的医学图像分割技术在发展过程中所面临的问题给出了应对策略,并对今后的发展方向进行了展望。

关键词: 深度学习, 医学图像, 神经网络, 卷积运算, 分割算法, 图像处理

Abstract:

Medical image segmentation plays an important role in clinical diagnosis and is the basis of other medical image processing methods. With the improvement of computer hardware performance, image segmentation technology based on deep learning has already become a powerful tool for processing medical images and is widely used in various medical image segmentation tasks. This paper introduces several types of common medical images and their characteristics, analyzes and compares the image segmentation algorithms that have emerged in recent years. Some algorithms have been successfully applied to segmentation tasks such as brain tissue, lungs and blood vessels. In response to the current problems in the development of medical image segmentation technology based on deep learning, corresponding strategies are proposed, and the future development direction is also prospected.

Key words: deep learning, medical image, neural network, convolution operation, segmentation algorithm, image processing

中图分类号: 

  • TP391.41