[1] |
Smith S, Jackson R, Pearson T, et al. Principles for national and regional guidelines on cardiovascular disease prevention[J]. Nature Clinical Practice Cardiovascular Medicine, 2006,3(9):461-470.
doi: 10.1038/ncpcardio0655
|
[2] |
Zipes D P. Clinical application of the electrocardiogram[J]. Journal of the American College of Cardiology, 2000,36(6):1746-1748.
doi: 10.1016/S0735-1097(00)00971-2
|
[3] |
官建平. 基于双谱的辐射源个体识别技术[D]. 西安:西安电子科技大学, 2014.
|
|
Guan Jianping. Study of individual transmitter identification based on bispectrum[D]. Xi’an:Xidian University, 2014.
|
[4] |
陶旺林, 卢选民, 刘李娟. 基于局部围线积分双谱的通信辐射源个体识别[J]. 计算机工程与应用, 2013,49(1):131-133,136.
|
|
Tao Wanglin, Lu Xuanmin, Liu Lijuan. Identifying individual radio transmitters with selected local surrounding-line integral Bi-spectrum[J]. Computer Engineering and Applications, 2013,49(1):131-133,136.
|
[5] |
唐贵基, 王晓龙. 基于局部均值分解和切片双谱的滚动轴承故障诊断研究[J]. 振动与冲击, 2013,32(24):83-95.
|
|
Tang Guiji, Wang Xiaolong. Fault diagnosis of roller bearings based on local mean decomposition and slice bispectrum[J]. Journal of Vibration and Shock, 2013,32(24):83-95
|
[6] |
马素萍, 巨志勇, 王告. 基于主成分分析与集成距离的果蔬种类识别方法[J]. 电子科技, 2019,32(11):1-6.
|
|
Ma Suping, Ju Zhiyong, Wang Gao. Fruits and vegetables recognition based on principal component analysis and the ensemble of distances[J]. Electronic Science and Technology, 2019,32(11):1-6.
|
[7] |
Dhir C S, Lee S Y. Discriminant independent component analysis[J]. IEEE Transactions on Neural Networks, 2011,22(6):845-857.
doi: 10.1109/TNN.2011.2122266
|
[8] |
刘明骞, 李兵兵, 吴启军. 基于矩形积分双谱和核主分量分析的电台指纹识别[J]. 西北大学学报(自然科学版), 2011,41(1):43-47.
|
|
Liu Mingqian, Li Bingbing, Wu Qijun. The radio transmitter fingerprint identification based on SIB and KPCA[J]. Journal of Northwest University (Natural Science Edition), 2011,41(1):43-47.
|
[9] |
Satija U, Trivedi N, Biswal G, et al. Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2019,14(3):581-591.
doi: 10.1109/TIFS.2018.2855665
|
[10] |
Jiang J, Zhang H F, Pi D C, et al. A novel multi-module neural network system for imbalanced heartbeats classification[J]. Expert Systems with Applications:X, 2019,1(1):1-15.
|
[11] |
Appathurai A, Carol J J, Raja C, et al. A study on ECG signal characterization and practical implementation of some ECG characterization techniques[J]. Measurement, 2019,147(1):106384-106396.
doi: 10.1016/j.measurement.2019.02.040
|
[12] |
Zhu H Y, Pan Y, Li K, et al. Method and VLSI implementation of lossy-to-lossless LTM ECG compression framework[J]. Electronics Letters, 2019,55(2):70-72.
doi: 10.1049/ell2.v55.2
|
[13] |
蓝机满. 基于径向基神经网络的粒子群表面缺陷识别算法[J]. 电子科技, 2019,32(5):92-95.
|
|
Lan Jiman. Particle swarm optimization surface defect recognition algorithm based on radial basis neural network[J]. Electronic Science and Technology, 2019,32(5):92-95.
|
[14] |
Yu S, Chen Y. Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network[J]. Pattern Recognition Letters, 2007,28(10):1142-1150.
doi: 10.1016/j.patrec.2007.01.017
|
[15] |
Yu S, Chou K. Integration of independent component analysis and neural networks for ECG beat classification[J]. Expert Systems with Applications, 2008,34(14):2841-2846.
doi: 10.1016/j.eswa.2007.05.006
|
[16] |
Gutiérrez G, Antonio J, Morfin M, et al. DSP-based arrhythmia classification using wavelet transform and probabilistic neural network[J]. Biomedical Signal Processing & Control, 2017,32(1):44-56.
|
[17] |
Ebrahimnezhad H, Khoshnoud S. Classification of arrhythmias using linear predictive coefficients and probabilistic neural network[J]. Applied Medical Informatics, 2013,33(3):55-62.
|
[18] |
Lynn H, Pan S, Kim P. A deep bidirectional GRU network model for biometric electrocardiogram classification based on recurrent neural networks[J]. IEEE Access, 2019,7(1):145395-145405.
doi: 10.1109/Access.6287639
|