电子科技 ›› 2021, Vol. 34 ›› Issue (5): 42-46.doi: 10.16180/j.cnki.issn1007-7820.2021.05.008

• • 上一篇    下一篇

基于双谱和谱特征的心电信号分类方法

刘姝,邵杰,张颐婷,张善章   

  1. 南京航空航天大学 电子信息工程学院,江苏 南京 211106
  • 出版日期:2021-05-15 发布日期:2021-05-24
  • 作者简介:刘姝(1995-),女,硕士研究生。研究方向:信号检测与处理。|邵杰(1963-),男,副教授。研究方向:智能信号检测与处理、机器人控制与视觉伺服。
  • 基金资助:
    教育部重点实验室开放研究基金(UASP1604)

ECG Classification Based on Bispectrum and Spectral Features

LIU Shu,SHAO Jie,ZHANG Yiting,ZHANG Shanzhang   

  1. College of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics, Nanjing 211106,China
  • Online:2021-05-15 Published:2021-05-24
  • Supported by:
    Open Research Fund of Key Laboratory of Ministry of Education(UASP1604)

摘要:

双谱作为最低的高阶谱,具有一系列优良特性,但也存在计算量大的缺陷。文中提出了一种在双谱矩阵基础上直接提取二维特征的心电信号特征提取方法。该方法将谱平坦度、谱亮度和谱滚降度3类谱特征组成特征向量,结合基于径向基核函数的支持向量机分类方法实现ECG信号的分类识别。然后,使用MIT-BIH数据库中的ECG信号对该方法进行了验证。实验结果表明,文中提出的基于双谱的二维谱特征提取方法计算量小,准确度达93.4%,可实现对心律不齐问题的有效诊断以及对心电信号的分类。

关键词: 心电信号, 特征提取, 双谱分析, 谱平坦度, 谱亮度, 谱滚降度, 分类识别, 支持向量机

Abstract:

As the lowest high-order spectrum, bispectrum has many excellent characteristics, but it also has the defect of large calculation. Based on bispectrum matrix, a feature extraction method for two-dimensional ECG signal is proposed in the present study. The spectral flatness, spectral brightness and spectral roll off are combined to form the eigenvector, which is further combined with the support vector machine classification method founded on radial basis kernel function to realize the classification and recognition of ECG signals. The ECG signal in MIT-BIH database is applied to verify the method. Experimental result show that the two-dimensional spectrum feature extraction method based on bispectrum proposed in this study has a small amount of computation and an accuracy of 93.4%, indicating that the proposed method can effectively realize the diagnosis of arrhythmia and the classification of ECG signals.

Key words: ECG signals, feature extraction, bispectrum analysis, spectrum flatness, spectral brightness, spectral roll-off, classification recognition, support vector machine

中图分类号: 

  • TP274