电子科技 ›› 2022, Vol. 35 ›› Issue (9): 37-43.doi: 10.16180/j.cnki.issn1007-7820.2022.09.006

• • 上一篇    下一篇

基于机器视觉的轨道交通自动测距研究

毕嘉桢1,沈拓1,2,张轩雄1   

  1. 1.上海理工大学 光电信息与计算机工程学院,上海 200093
    2.同济大学 上海市轨道交通结构耐久与系统安全重点实验室,上海 201804
  • 收稿日期:2021-03-23 出版日期:2022-09-15 发布日期:2022-09-15
  • 作者简介:毕嘉桢(1996-),女,硕士研究生。研究方向:单目测距。|张轩雄(1963-),男,博士,教授。研究方向:测控技术与仪器。
  • 基金资助:
    国家自然科学基金(U1734211)

A Research on Distance Measurement Between Trains in Rail Transit Based on Machine Vision

BI Jiazhen1,SHEN Tuo1,2,ZHANG Xuanxiong1   

  1. 1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
    2. Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety,Tongji University,Shanghai 201804,China
  • Received:2021-03-23 Online:2022-09-15 Published:2022-09-15
  • Supported by:
    National Natural Science Foundation of China(U1734211)

摘要:

行驶中的两辆列车之间保持安全距离是避免列车追尾事故发生的重要条件。由于机器视觉获得的图像数据信息丰富,可以根据采集到的图像进行多方面的集成检测,所以文中提出了一种基于机器视觉的列车测距方法。该方法以列车两条轨道不变的间距(1 435 mm)作为基准来推算列车之间距离。利用卷积神经网络对单目相机采集到的图像进行处理和分析,提取所需的轨道特征,再基于已有的小孔成像原理推导出世界坐标系与像素坐标系之间的映射关系,从而优化列车之间距离的计算式。实验结果表明,测距系统的误差率<6%,并且系统测量时间在40 ms之内,说明该方法实现了将测距与在图像中获取其他信息的有效融合与集成,可用于对列车制动距离进行判断。

关键词: 距离测量, 机器视觉, 单目相机, 深度学习, 图像处理, 轨道检测, 小孔成像原理, 卷积神经网络

Abstract:

A safe distance between two moving trains is an important condition to avoid train rear-end collision. Since the image data obtained by machine vision is rich in information and can be integrated in many aspects based on the collected images, this study proposes a distance measurement method based on monocular machine vision. This method uses the constant distance between the two tracks of the train (1 435 mm) as a benchmark to estimate the distance between trains. The images collected by the monocular camera are processed and analyzed by the convolution neural network to extract the track features. Based on the existing small hole imaging principle, the mapping relationship between the world coordinate system and the pixel coordinate system is derived, so as to optimize the calculation formula of the distance between trains. The experimental results show that the error rate of the system is less than 6%, and the measurement time of the system is within 40 ms, indicating that the method realizes the effective fusion and integration of ranging and other information obtained in the image, and can be used to judge the braking distance of the train.

Key words: distance measurement, machine vision, monocular camera, deep learning, image processing, track detection, pinhole imaging model, convolution neural network

中图分类号: 

  • TP391