Electronic Science and Technology ›› 2024, Vol. 37 ›› Issue (4): 30-37.doi: 10.16180/j.cnki.issn1007-7820.2024.04.005
Previous Articles Next Articles
GAO Dian, ZHANG Jing
Received:
2022-11-25
Online:
2024-04-15
Published:
2024-04-19
Supported by:
CLC Number:
GAO Dian, ZHANG Jing. Short-Term Load Forecasting Based on CEEMD-ITSA-BiLSTM Combined Model[J].Electronic Science and Technology, 2024, 37(4): 30-37.
Table 2.
Evaluation indicators of each models"
算法模型 | RMSE/MW | MAE/MW | MAPE/% |
---|---|---|---|
BiLSTM | 326.43 | 270.15 | 3.35 |
TSA-BiLSTM | 253.19 | 195.30 | 2.83 |
CEEMD-BiILSTM | 271.50 | 230.19 | 3.06 |
ITSA-BiLSTM | 210.99 | 174.82 | 2.26 |
CEEMD-GA-BiLSTM | 198.69 | 163.64 | 2.31 |
CEEMD-PSO-BiLSTM | 193.94 | 149.89 | 2.07 |
CEEMD-SOA-BiLSTM | 201.68 | 162.30 | 2.28 |
CEEMD-GWO-BiLSTM | 189.32 | 149.70 | 2.07 |
CEEMD-TSA-BiLSTM | 179.33 | 144.59 | 1.93 |
CEEMD-ITSA-BiLSTM | 167.98 | 131.52 | 1.85 |
[1] | 廖旎焕, 胡智宏, 马莹莹, 等. 电力系统短期负荷预测方法综述[J]. 电力系统保护与控制, 2011, 39(1):147-152. |
Liao Nihuan, Hu Zhihong, Ma Yingying, et al. Review of the short-term load forecasting methods of electric power system[J]. Power System Protection and Control, 2011, 39(1):147-152. | |
[2] | 李东东, 覃子珊, 林顺富, 等. 基于混沌时间序列法的微网短期负荷预测[J]. 电力系统及其自动化学报, 2015, 27(5):14-18. |
Li Dongdong, Qin Zishan, Lin Shunfu, et al. Short-term load forecasting for microgrid based on method of chaotic time series[J]. Proceedings of the CSU-EPSA, 2015, 27(5):14-18. | |
[3] | 李晨熙. 基于ARIMA模型的短期电力负荷预测[J]. 吉林电力, 2015, 43(6):22-24. |
Li Chenxi. A short-term load forecasting model based on ARIMA[J]. Jilin Electric Power, 2015, 43(6):22-24. | |
[4] | 孙珍. 基于协方差稳健模糊线性回归的系统负荷预测数学模型[J]. 现代电子技术, 2019, 42(15):94-96,100. |
Sun Zhen. System load forecasting mathematical model based on covariance robust fuzzy linear regression[J]. Modern Electronics Technique, 2019, 42(15):94-96,100. | |
[5] | 陈培垠, 方彦军. 基于卡尔曼滤波预测节假日逐点增长率的电力系统短期负荷预测[J]. 武汉大学学报(工学版), 2020, 53(2):139-144. |
Chen Peiyin, Fang Yanjun. Short term load forecasting of power system for holiday point by point growth rate based on Kalman filtering[J]. Engineering Journal of Wuhan University, 2020, 53(2):139-144. | |
[6] | 王瑞, 陈诗雯, 逯静. 基于模糊聚类的BOA-SVR分时段精细化短期负荷预测[J]. 武汉大学学报(工学版), 2021, 54(12):1140-1149. |
Wang Rui, Chen Shiwen,Lu Jing.Time division refined shortterm load forecasting based on BOASVR and fuzzy clustering[J]. Engineering Journal of Wuhan University, 2021, 54(12):1140-1149. | |
[7] |
张刚, 刘福潮, 王维洲, 等. 电网短期负荷预测的BP-ANN方法及应用[J]. 电力建设, 2014, 35(3):54-58.
doi: 10.3969/j.issn.1000-7229.2014.03.010 |
Zhang Gang, Liu Fuchao, Wang Weizhou, et al. BP-ANNmethod for power grid short-term load forecasting and its application[J]. Electric Power Construction, 2014, 35(3):54-58. | |
[8] | 谢丽蓉, 王斌, 包洪印, 等. 基于EEMD-WOA-LSSVM的超短期风电功率预测[J]. 太阳能学报, 2021, 42(7):290-296. |
Xie Lirong, Wang Bin, Bao Hongyin, et al. Super-short-term wind power forecasting based on EEMD-WOA-LSSVM[J]. Acta Energiae Solaris Sinica, 2021, 42(7):290-296. | |
[9] | 张淑清, 段晓宁, 张立国, 等. Tsne降维可视化分析及飞蛾火焰优化ELM算法在电力负荷预测中应用[J]. 中国电机工程学报, 2021, 41(9):3120-3130. |
Zhang Shuqing, Duan Xiaoning, Zhang Liguo, et al. Tsne dimension reduction visualization analysis and moth flame optimized ELM algorithm applied in power load forecasting[J]. Proceedings of the CSEE, 2021, 41(9):3120-3130. | |
[10] | 龚飘怡, 罗云峰, 方哲梅, 等. 基于Attention-BiLSTM-LSTM神经网络的短期电力负荷预测方法[J]. 计算机应用, 2021, 41(Z1):81-86. |
Gong Piaoyi, Luo Yunfeng, Fang Zhemei, et al. Short-term power load forecasting method based on Attention-BiLSTM-LSTM neural network[J]. Journal of Computer Applications, 2021, 41(Z1):81-86. | |
[11] | 李玉志, 刘晓亮, 邢方方, 等. 基于Bi-LSTM和特征关联性分析的日尖峰负荷预测[J]. 电网技术, 2021, 45(7):2719-2730. |
Li Yuzhi, Liu Xiaoliang, Xing Fangfang, et al. Daily peak load prediction based on correlation analysis and Bi-directional long short-term memory network[J]. Power System Technology, 2021, 45(7):2719-2730. | |
[12] | 朱凌建, 荀子涵, 王裕鑫, 等. 基于CNN-BiLSTM的短期电力负荷预测[J]. 电网技术, 2021, 45(11):4532-4539. |
Zhu Lingjian, Xun Zihan, Wang Yuxin, et al. Short-term power load forecasting based on CNN-BiLSTM[J]. Power System Technology, 2021, 45(11):4532-4539. | |
[13] | 孙辉, 杨帆, 高正男, 等. 考虑特征重要性值波动的MI-BI-LSTM短期负荷预测[J]. 电力系统自动化, 2022, 46(8):95-103. |
Sun Hui, Yang Fan, Gao Zhengnan, et al. Short-term load forecasting based on mutual information and Bi-directional long short-term memory network considering fluctuation in importance values of features[J]. Automation of Electric Power Systems, 2022, 46(8):95-103. | |
[14] | Shi H, Miao K, Ren X. Short-term load forecasting based on CNN-BiLSTM with Bayesian optimization and attention mechanism[J]. Concurrency Computation Practice and Experience, 2021, 10(2):66-76. |
[15] |
Guo Y, Li Y, Qiao X, et al. BiLSTM multitask learning-based combined load forecasting considering the loads coupling relationship for multienergy system[J]. IEEE Transactions on Smart Grid, 2022, 13(5):3481-3492.
doi: 10.1109/TSG.2022.3173964 |
[16] |
Zheng H, Yuan J, Chen L. Short-term load forecasting using EMD-LSTM neural networks with a XGBoost algorithm for feature importance evaluation[J]. Energies, 2017, 10(8):1168-1188.
doi: 10.3390/en10081168 |
[17] |
Huang S, Zheng J, Pan H, et al. Order-statistic filtering Fourier decomposition and its application to rolling bearing fault diagnosis[J]. Journal of Vibration and Control, 2022, 28(13-14):1605-1620.
doi: 10.1177/1077546321997598 |
[18] |
Ding Y F, Chen Z J, Zhang H W, et al. A short-term wind power prediction model based on CEEMD and WOA-KELM[J]. Renewable Energy, 2022, 189(4):188-198.
doi: 10.1016/j.renene.2022.02.108 |
[19] |
Liu X, Zhang Y, Zhang Q. Comparison of EEMD-ARI-MA,EEMD-BP and EEMD-SVM algorithms for predicting the hourly urban water consumption[J]. Journal of Hydroinformatics, 2022, 24(3):535-558.
doi: 10.2166/hydro.2022.146 |
[20] | Kaur S, Awasthi L K, Sangal A L, et al. Tunicate swarm algorithm:A new bio-inspired based metaheuristic paradigm for global optimization[J]. Engineering Applications of Artificial Intelligence, 2020, 90(10):3541-3570. |
[21] | 刘辉, 凌宁青, 罗志强, 等. 基于TCN-LSTM和气象相似日集的电网短期负荷预测方法[J]. 智慧电力, 2022, 50(8):30-37. |
Liu Hui, Ling Ningqing, Luo Zhiqiang, et al. Power grid short-term load forecasting method based on TCN-LSTM and meteorological similar day sets[J]. Smart Power, 2022, 50(8):30-37. | |
[22] | 程换新, 黄震. 基于改进PSO优化RNN的短期电力负荷预测模型[J]. 电子测量技术, 2019, 42(20):94-98. |
Cheng Huanxin, Huang Zhen. Short-term electric load forecasting model based on improved PSO optimized RNN[J]. Electronic Measurement Technology, 2019, 42(20):94-98. | |
[23] |
Dhiman G, Kumar V. Seagull optimization algorithm:Theory and its applications for large-scale industrial engineering problems[J]. Knowledge-Based Systems, 2019, 165(1):169-196.
doi: 10.1016/j.knosys.2018.11.024 |
[24] |
Mirjaliu S, Mirjaliu S M, Lewis A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69(3):46-61.
doi: 10.1016/j.advengsoft.2013.12.007 |
[25] | 冯先丁, 魏镜弢, 吴张永, 等. 基于PCA-PSO-SVM的球磨机负荷预测研究[J]. 电子科技, 2022, 35(1):29-34. |
Feng Xianding, Wei Jingtao, Wu Zhangyong, et al. Research on load forcast of ball mill based on PCA-PSO-SVM[J]. Electronic Science and Technology, 2022, 35(1):29-34. | |
[26] | 张崇崇, 黄亚宇. GA-BP神经网络对片烟结构的预测研究[J]. 电子科技, 2022, 35(6):35-42. |
Zhang Chongchong, Huang Yayu. A GA-BP neural net-work for predicting the structure of leaf tobacco[J]. Electronic Science and Technology, 2022, 35(6):35-42. |
[1] | WEN Yanfei,WANG Wanxiong. Short-Term Power Load Forecasting Based on FA-SVR-LSTM Combined Model [J]. Electronic Science and Technology, 2023, 36(9): 1-7. |
[2] | LIN Lin,WANG Wanxiong. Short-Term Wind Speed Prediction Based on EMD-GWO-SVR Combined Model [J]. Electronic Science and Technology, 2023, 36(5): 1-8. |
[3] | WANG Yuqian,WANG Wanxiong. Short-Term Load Forecasting Based on EMD-Bayes-SVR Combined Model [J]. Electronic Science and Technology, 2023, 36(12): 64-71. |
[4] | WANG Yumei,ZHENG Yi. Harmonic Detection Technology Based on Improved Wavelet Threshold Denoising and CEEMDAN-HT Fusion [J]. Electronic Science and Technology, 2023, 36(1): 60-66. |
[5] | LIU Han,WANG Wanxiong. Short-Term Power Demand Forecasting Based on SARIMA-GS-SVR Combined Model [J]. Electronic Science and Technology, 2022, 35(8): 58-65. |
[6] | JIANG Yinfang,HU Huajian,Guo Yongqiang,WU Bo. Experimental Study on Parameters Optimization of Magnetostrictive Sensor Backing Layer [J]. Electronic Science and Technology, 2021, 34(2): 68-73. |
[7] | WANG Hongliang,CHEN Xinyuan,ZHAO Yumeng. Load Forecasting Method Based on Ensemble Empirical Mode Decomposition and ARIMA-GRNN [J]. Electronic Science and Technology, 2021, 34(12): 42-48. |
[8] | ZHANG Qiukui,YI Yingping,ZHAO Jiran,XING Wei. Application Research of Microstrip Antenna Based on Polystry Dielectric Substrate [J]. Electronic Science and Technology, 2020, 33(4): 6-12. |
[9] | YANG Haizhu,JIANG Zhaoyang,LI Menglong,KANG Le. Parameters Selection for LSSVM Based on Artificial Fish Swarm-Shuffled Frog Jump Algorithms Optimization in Short-Term Load Forecasting [J]. Electronic Science and Technology, 2020, 33(12): 67-74. |
[10] | WU Yankai,ZHANG Wei,MA Yingman,LI Jiayang. Two Degree of Freedom PID Parameter Optimization Based on GA-PSO Fusion Algorithm [J]. Electronic Science and Technology, 2019, 32(10): 54-59. |
[11] | MA Lixin,YIN Jingjing,ZHENG Xiaodong. Short-term Load Forecasting Based on Daily Feature Extraction of Similar Days and ELM [J]. , 2015, 28(12): 22-. |
[12] | ZHAO Zhi-Qiang, YAN Xue-Long. Algorithm for EMD and ICA-based Single-channel Voice Blind Source Separation [J]. , 12, 25(7): 66-. |
|