[1] |
周文宗, 李洪涛, 张硌, 等. pH值对黄鳝最大摄食率的影响[J]. 江苏农业科学, 2007, 35(1):141-143.
|
|
Zhou Wenzong, Li Hongtao, Zhang Ge, et al. Effect of pH value on the maximum feeding absorption of monopterus albus[J]. Jiangsu Agricultural Sciences, 2007, 35(1):141-143.
|
[2] |
王李想. 基于多指标时序数据的城市河道水质异常检测方法研究[D]. 杭州: 浙江大学, 2021:32-36.
|
|
Wang Lixiang. Research on water quality anomaly detection of urban river using multi-indicator time series data[D]. Hangzhou: Zhejiang University, 2021:32-36.
|
[3] |
Ji X H, Pan Y, Jia G Q, et al. A neural network-based prediction model in water monitoring networks[J]. Water Supply, 2021, 21(5):2347-2356.
doi: 10.2166/ws.2021.046
|
[4] |
冯先丁, 魏镜弢, 吴张永, 等. 基于PCA-PSO-SVM的球磨机负荷预测研究[J]. 电子科技, 2022, 35(1):29-34.
|
|
Feng Xianding, Wei Jingtao, Wu Zhangyong, et al. Research on load forecast of ball mill based on PCA-PSO-SVM[J]. Electronic Science and Technology, 2022, 35(1):29-34.
|
[5] |
马创, 王尧, 李林峰. 基于遗传算法与支持向量机的水质预测模型[J]. 重庆大学学报, 2021, 44(7):108-114.
|
|
Ma Chuang, Wang Yao, Li Linfeng, et al. A water quality prediction model based on genetic algorithm and SVM[J]. Journal of Chongqing University, 2021, 44(7):108-114.
|
[6] |
Peng X H, Xie S Y, Yu Y H, et al. Fuzzy neural network based prediction model applied in primary component analysis[J]. Cluster Comput, 2017, 20(1):131-140.
doi: 10.1007/s10586-017-0738-2
|
[7] |
Moghadam S V, Sharafati A, Feizi H, et al. An efficient strategy for predicting river dissolved oxygen concentration:Application of deep recurrent neural network model[J]. Environmental Monitoring and Assessment, 2021, 193(11):1-18.
doi: 10.1007/s10661-020-08746-9
|
[8] |
任永琴, 金柱成, 俞真元, 等. 基于双向门控循环单元的地表水氨氮预测[J]. 中国环境科学, 2022, 42(2):672-679.
|
|
Ren Yongqin, Jin Zhucheng, Yu Zhenyuan, et al. Ammonia nitrogen prediction in surface water based on bi-directional gating cycle unit[J]. China Environmental Science, 2022, 42(2):672-679.
|
[9] |
谢雨茜, 李路, 朱明, 等. 基于EMD与K-means的ILSTM模型在池塘溶解氧预测中的应用[J]. 华中农业大学学报(自然科学版), 2022, 41(3):200-210.
|
|
Xie Yuxi, Li Lu, Zhu Ming, et al. Application of ILSTM model based on EMD and K-means in prediction of dissolved oxygen in pond[J]. Journal of Huazhong Agricultural University(Natural Science Edition), 2022, 41(3):200-210.
|
[10] |
梁冰, 田斌, 洪汉玉. 基于LSTM-Attention的水质参数预测研究[J]. 自动化与仪表, 2022, 37(3):80-84.
|
|
Liang Bing, Tian Bin, Hong Hanyu. Research on water quality parameter prediction based on LSTM-attention[J]. Automation and Instrumentation, 2022, 37(3):80-84.
|
[1] |
Bjer D, Martinovic G, Brest J. A population initialization method for evolutionary algorithms based on clustering and Cauchy deviates[J]. Expert Systems with Applications, 2016, 60(10):294-310.
doi: 10.1016/j.eswa.2016.05.009
|
[2] |
Xue J, Shen B. A novel swarm intelligence optimization approach:Sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1):22-34.
|
[11] |
Song C, Yao L, Hua C, et al. A water quality prediction model based on variational mode decomposition and the least squares support vector machine optimized by the sparrow search algorithm of the Yangtze River[J]. Environmental Monitoring and Assessment, 2021, 193(6):363-379.
doi: 10.1007/s10661-021-09127-6
|
[12] |
Zhang H, Peng Z, Tang J, et al. A multi-layer extreme learning machine refined by sparrow search algorithm and weighted mean filter for short-term multi-step wind speed forecasting[J]. Sustainable Energy Technologies and Assessments, 2022, 50(3):1-14.
|
[13] |
Li D, Yu X, Liu S, et al. Wind power prediction based on PSO-Kalman[J]. Energy Reports, 2022, 8(7):958-968.
|
[14] |
贺振霞, 鲍学英. 基于改进PSO优化SVR的地下水水质综合评价研究[J]. 水文, 2021, 41(6):26-32.
|
|
He Zhenxia, Bao Xueying. Comprehensive evaluation of groundwater quality based on SVR optimized by improved[J]. Hydrology, 2021, 41(6):26-32.
|
[15] |
刘耀东, 姜文超, 廖宇航. 基于蜂群优化极限学习算法的用电功率预测[J]. 电气应用, 2022, 41(1):21-25,9.
|
|
Liu Yaodong, Jiang Wenchao, Liao Yuhang. Eletric power forecasting based on bee colony optimized extreme learning machine algorithm[J]. Electrical Application, 2022, 41(1):21-25,9.
|
[16] |
王立辉, 杨辉斌, 王银堂, 等. 基于GWO-LSTM的丹江口水库入库径流预测[J]. 水利水运工程学报, 2021(6):51-59.
|
|
Wang Lihui, Yang Huibin, Wang Yintang, et al. Prediction of inflow to the Danjiangkou reservoir based on GWO-LSTM[J]. Hydro-Science and Engineering, 2021(6):51-59.
|
[17] |
袁红春, 高子玥, 张天蛟. 基于改进的XGBoost模型预测南太平洋长鳍金枪鱼资源丰度[J]. 海洋湖沼通报, 2022, 44(2):112-120.
doi: 10.13984/j.cnki.cn37-1141.2022.02.015
|
|
Yuan Hongchun, Gao Ziyue, Zhang Tianjiao. Predicting of albacore tuna abundance in South Pacific based on improved XG Boost model[J]. Transactions of Oceanology and Limnology, 2022, 44(2):112-120.
doi: 10.13984/j.cnki.cn37-1141.2022.02.015
|
[18] |
杨帆, 申亚, 李东东, 等. 基于GA-GNNM的极地光伏发电功率预测方法[J]. 太阳能学报, 2022, 43(4):167-174.
doi: 10.19912/j.0254-0096.tynxb.2020-0768
|
|
Yang Fan, Shen Ya, Li Dongdong, et al. Polar photovoltaic power forecasting method based on GA-GNNM[J]. Acta Energiae Solaris Sinica, 2022, 43(4):167-174.
doi: 10.19912/j.0254-0096.tynxb.2020-0768
|
[19] |
孟志军, 刘淮玉, 安晓飞, 等. 基于SPA-SSA-BP的小麦秸秆含水率检测模型[J]. 农业机械学报, 2022, 53(2):231-238,245.
|
|
Meng Zhijun, Liu Huaiyu, An Xiaofei, et al. Prediction model of wheat straw moisture content based on SPA-SSA-BP[J]. Transaction of the Chinese Society for Agricultural Machinery, 2022, 53(2):231-238,245.
|
[20] |
Wu C, Fu X, Pei J, et al. A novel sparrow search algorithm for the traveling salesman problem[J]. IEEE Access, 2021, 9(11):153456-153471.
doi: 10.1109/ACCESS.2021.3128433
|
[21] |
Qiao W, Liu W, Liu E. A combination model based on wavelet transform for predicting the difference between monthly natural gas production and consumption of US[J]. Energy, 2021, 235(11):121216-121243.
doi: 10.1016/j.energy.2021.121216
|
[22] |
Zhang W, Lin Z, Liu X. Short-term off shore wind power forecasting:A hybrid model based on discrete wavelet transform,seasonal autoregressive integrated moving average,and deep-learning-based long short-term memory[J]. Renewable Energy, 2022, 185(2):611-628.
doi: 10.1016/j.renene.2021.12.100
|
[23] |
Kumar A, Tomar H, Mehla V K, et al. Stationary wavelet transform based ECG signal denoising method[J]. ISA Transactions, 2021, 114(8):251-262.
doi: 10.1016/j.isatra.2020.12.029
|
[24] |
夏峰, 卢才武, 顾清华. 无人机采场图像二维经验小波变换降噪研究[J]. 测绘科学, 2021, 46(1):108-113.
|
|
Xia Feng, Lu Caiwu, Gu Qinghua. Research on 2D empirical wavelet transform noise reduction of UAV stope images[J]. Science of Surveying and Mapping, 2021, 46(1):108-113.
|
[25] |
Feng J, Zhang J, Zhu X, et al. A novel chaos optimization algorithm[J]. Multimedia Tools and Applications, 2017, 76(16):17405-17436.
doi: 10.1007/s11042-016-3907-z
|
[26] |
龙文, 伍铁斌, 唐明珠, 等. 基于透镜成像学习策略的灰狼优化算法[J]. 自动化学报, 2020, 46(10):2148-2164.
|
|
Long Wen, Wu Tiebin, Tang Mingzhu, et al. Grey wolf optimizer algorithm based on lens imaging learning strategy[J]. Acta Automatic Sinica, 2020, 46(10):2148-2164.
|
[27] |
刘航, 张晓明, 汪长剑. 基于柯西分布和父种轮换机制的种子优化算法[J]. 模式识别与人工智能, 2021, 34(7): 581-591.
doi: 10.16451/j.cnki.issn1003-6059.202107001
|
|
Liu Hang, Zhang Xiaoming, Wang Changjian. Bean optimization algorithm based on Cauchy distribution and parent rotation mechanism[J]. Pattern Recognition and Artificial Intelligence, 2021, 34(7):581-591.
doi: 10.16451/j.cnki.issn1003-6059.202107001
|