›› 2015, Vol. 28 ›› Issue (5): 127-.

• 论文 • 上一篇    下一篇

基于多特征融合与支持向量机的手势识别

吴健健,陈玮   

  1. (上海理工大学 光电信息与计算机工程学院,上海 200093)
  • 出版日期:2015-05-15 发布日期:2015-05-19
  • 作者简介:吴健健(1991—),男,硕士研究生。研究方向:嵌入式系统,模式识别,图像处理。Email:wujianjian111@126.com。陈玮(1964—),女,副教授。研究方向:计算机控制技术,模式识别,嵌入式系统。
  • 基金资助:

     沪江基金资助项目(C14002)

Hand Gesture Recognition Based on Multifeature Fusion and Support Vector Machines

WU Jianjian,CHEN Wei   

  1. (School of OpticalElectrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
  • Online:2015-05-15 Published:2015-05-19

摘要:

针对手势识别中人的手部特征描述易受到环境因素影响,手势识别率低等问题,并考虑到单个特征的局限性,提出了一种基于Hu矩和HOG特征融合的支持向量机手势识别新方法。该方法首先对处理后的手势图像提取局部的HOG特征,然后针对手势的轮廓提取全局Hu矩特征,再将两种特征融合成混合特征,并通过主成分分析法对混合特征进行降维形成最终分类特征,并将新特征输入到支持向量机中进行识别。实验表明,该方法具有较好的鲁棒性和较高的识别率。

关键词: 手势识别, Hu矩, 梯度直方图, 主成分分析法, 支持向量机

Abstract:

Hand gesture features are easily affected by environmental factors and the gesture recognition rate is therefore low.And single features are much limited.This paper presents a novel hand gesture recognition algorithm based on multifeature fusion and support vector machines.The fusion features include HOG features and Hu moments.First,the gesture image is set to extract the local HOG features.Then Hu moments are extracted from the gesture contour.After that,the dimensions of the fusion features of HOG and Hu moments are reduced by using Principal Component Analysis (PCA).Finally,the fusion features are put into support vector machines for identification.The experimental results show that the method proposed has better robustness and a higher recognition rate.

Key words: gesture recognition;Hu moments;histograms of oriented gradients;principal component analysis;support vector machines

中图分类号: 

  • TP391.41