电子科技 ›› 2021, Vol. 34 ›› Issue (12): 42-48.doi: 10.16180/j.cnki.issn1007-7820.2021.12.008

• • 上一篇    下一篇

基于集合经验模态分解和ARIMA-GRNN的负荷预测方法

王洪亮,陈新源,赵雨梦   

  1. 昆明理工大学 电力工程学院,云南 昆明 650500
  • 收稿日期:2020-08-15 出版日期:2021-12-15 发布日期:2021-12-06
  • 作者简介:王洪亮(1984-),男,博士后,副教授。研究方向:电力物联网、电网信息物理系统。|陈新源(1995-),男,硕士研究生。研究方向:电网信息物理系统。|赵雨梦(1995-),女,硕士研究生。研究方向:电网信息物理系统。
  • 基金资助:
    中国博士后科学基金(2019M653496)

Load Forecasting Method Based on Ensemble Empirical Mode Decomposition and ARIMA-GRNN

WANG Hongliang,CHEN Xinyuan,ZHAO Yumeng   

  1. Faculty of Electric Power Engineering,Kunming University of Science and Technology,Kunming 650500,China
  • Received:2020-08-15 Online:2021-12-15 Published:2021-12-06
  • Supported by:
    China Post Doctoral Science Foundation(2019M653496)

摘要:

针对传统负荷预测方法难以兼顾电力负荷内在线性特征量与非线性特征量的问题,文中提出一种基于EEMD和ARIMA-GRNN的混合负荷预测模型方法。该方法采用EEMD法,将负荷数据分解成不存在模态混叠的IMF分量和余项。运用ARIMA模型算法对每个IMF分量进行线性预测,得到时间序列预测分量,并将其与原始数据相减得到其中的非线性分量。通过GRNN神经网络算法对非线性分量进行预测得到非线性分量的预测值,并将求得的线性预测分量和非线性预测分量相加得到最终的预测值。仿真实验表明,文中提出的基于EEMD和ARIMA-GRNN 的混合预测模型在预测精度和性能上均优于采用单一算法的负荷预测方法。

关键词: 负荷预测, 集合经验模态分解, ARIMA-GRNN, 混合模型, IMF, 神经网络算法, 非线性, 时间序列

Abstract:

In view of the problem that traditional load forecasting methods hardly take into account the inherent linear and nonlinear characteristics of power load, this study proposes a hybrid load forecasting model based on EEMD and ARIMA-GRNN. In this method, EEMD method is used to decompose the load data into IMF components and residual terms without modal aliasing. ARIMA model algorithm is used to make linear prediction for each IMF component to obtain the time series prediction component, and subtract it from the original data to obtain the non-linear component. The non-linear component is predicted by the GRNN neural network algorithm to obtain the predicted value of the non-linear component. The obtained linear and the nonlinear predicted components are added to obtain the final predicted value. The simulation results show that the hybrid forecasting model based on EEMD and ARIMA-GRNN proposed in the present study is superior to the load forecasting method using a single algorithm in terms of forecasting accuracy and performance.

Key words: load forecasting, EEMD, ARIMA-GRNN, hybrid model, IMF, neural network algorithm, nonlinear, time series

中图分类号: 

  • TP13