电子科技 ›› 2022, Vol. 35 ›› Issue (6): 6-12.doi: 10.16180/j.cnki.issn1007-7820.2022.06.002

• • 上一篇    下一篇

基于残差密集连接与注意力融合的人群计数算法

沈宁静,袁健   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2021-01-28 出版日期:2022-06-15 发布日期:2022-06-20
  • 作者简介:沈宁静(1995-),女,硕士研究生。研究方向:图像处理、深度学习。|袁健(1971-),女,博士,副教授。研究方向:图像处理、数据挖掘、深度学习等。
  • 基金资助:
    国家自然科学基金(61775139)

Crowd Counting Algorithm Based on Residual Dense Connection and Attention Fusion

SHEN Ningjing,YUAN Jian   

  1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2021-01-28 Online:2022-06-15 Published:2022-06-20
  • Supported by:
    National Natural Science Foundation of China(61775139)

摘要:

现有人群计数算法采用多列融合结构来解决单一图像的多尺度问题,但该处理方法不能有效利用低层特征信息,从而导致最终人群计数结果不准确。针对这一缺陷,文中提出一种基于残差密集连接与注意力融合的人群计数算法。该算法的前端利用改进VGG16网络提取低级特征信息。算法后端主分支基于残差密集连接结构,利用残差网络和密集网络结合方式捕获层与层间的特征信息,可高效捕获多尺度信息。侧分支通过引入注意力机制,生成对应尺度注意力图,有效区分特征图的背景和前景,降低了背景噪声的影响。采用3个主流公开数据集对该算法进行验证。实验结果表明,该算法计数有效且计数准确率优于其他算法。

关键词: 人群计数, 残差密集, 注意力, 卷积神经网络, 密度图, 特征融合, 多尺度, 最近邻插值

Abstract:

The existing crowd counting algorithm uses multi-column fusion structure to solve the multi-scale problem of a single image, which cannot effectively use the low-level feature information, resulting in inaccurate final crowd counting results. In order to improve the accuracy, a crowd counting algorithm based on residual dense connection and attention fusion is proposed. The algorithm uses improved VGG16 network to extract low-level feature information. Based on the residual dense connection structure, the back-end main branch of the proposed algorithm uses the combination of residual network and dense network to capture the feature information between layers and efficiently capture multi-scale information. Side branch introduces the attention mechanism to generate the corresponding scale attention map, which effectively distinguishes the background and prospect of the feature map and reduces the influence of background noise. The algorithm is tested on three mainstream public data sets. The experimental results show that the algorithm is effective in counting and has better counting accuracy than other algorithms.

Key words: crowd counting, dense residuals, attention, convolutional neural network, density figure, feature fusion, multi-scale, nearest neighbor interpolation

中图分类号: 

  • TP391