[1] |
Leibe B, Seemann E, Schiele B. Pedestrian detection in crowded scenes[C]. San Diego: IEEE Computer Society Conference on Computer Vision & Pattern Recognition. IEEE, 2005.
|
[2] |
夏菁菁, 高琳, 范勇, 等. 基于骨架特征的人数统计[J]. 计算机应用, 2014, 34(2):585-588.
|
|
Xia Jingjing, Gao Lin, Fan Yong, et al. People counting based on skeleton feature[J]. Journal of Computer Applications, 2014, 34(2):585-588.
|
[3] |
杨林, 吕学强, 张鑫, 等. 像素特征与粘连人体分割结合的人数统计方法[J]. 计算机工程与设计, 2019, 40(2):455-461.
|
|
Yang Lin, Lü Xueqiang, Zhang Xin, et al. People countring method combining pilxel feature and conglutination human body segmentation[J]. Computer Engineering and Design, 2019, 40(2):455-461.
|
[4] |
禹明娟, 张英烈, 陈临强. 医院监控场景下的人群密度估计方法[J]. 电子科技, 2016, 29(3):75-78.
|
|
Yu Mingjuan, Zhang Yinglie, Chen Linqiang. Crowd density estimation method for hospital surveillance[J]. Electronic Science and Technology, 2016, 29(3):75-78.
|
[5] |
范龙飞, 姜子政, 李海丰, 等. 基于局部密度分类的人数统计算法[J]. 控制工程, 2019, 26(6):1015-1020.
|
|
Fan Longfei, Jiang Zizheng, Li Haifeng, et al. Population statistics algorithm based on localdensity classification[J]. Control engineering of China, 2019, 26(6):1015-1020.
|
[6] |
Boominathan L, Kruthivent S S S, Babu R V. Crowdnet: A deep convolutional network for dense crowd counting[C]. Amsterdam: Proceedings of the Twenty-fourth ACM International Conference on Multimedia, 2016.
|
[7] |
Zhang Y, Zhou D, Chen S, et al. Single-image crowd counting via multi-column convolutional neural network[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[8] |
Sindagi V A, Patel V M. Cnn-based cascaded multit-ask learning of high-level prior and density estimation for crowd counting[C]. Lecce: Proceedings of IEEE International Conference on Advanced Video and Signal Based Surveillance, 2017.
|
[9] |
Sam D B, Surya S, Babu R V. Switching convolutional neural network for crowd counting[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[10] |
Zeng L, Xu X, Cai B, et al. Multi-scale convolutional neural networks for crowd counting[C]. Beijing: Proceedings of the IEEE International Conference on Image Processing, 2017.
|
[11] |
Liu M, Jiang J, Guo Z Q, et al. Crowd counting with fully convolutional neural network[C]. Athens: The Twenty-fifth IEEE International Conference on Image Processing, 2018.
|
[12] |
Li Y, Zhang X, Chen D. Csrnet: Dilated convolutional neural networks for understanding the highly congested scenes[C]. Salt Lake: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.
|
[13] |
Wang S, Wang H, Li Q. Multi-Dilation network for crowd counting[C]. Beijing: Proceedings of the ACM Multimedia Asia, 2019.
|
[14] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014(11):332-345.
|
[15] |
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[16] |
Zhao B, Wu X, Feng J, et al. Diversified visual attention networks for fine-grained object classification[J]. IEEE Transactions on Multimedia, 2017, 19(6):1245-1256.
doi: 10.1109/TMM.2017.2648498
|
[17] |
Park J, Woo S, Lee J Y, et al. BAM:bottleneck attention module[C]. Newcastle: Proceedings of the British Machine Vision Conference, 2018.
|
[18] |
Chen L C, Yang Y, Wang J, et al. Attention to scale:Scale-aware semantic image segmentation[C]. Las Vegas: Proceedings of the IEEE Conference on Computer vision and Pattern Recognition, 2016.
|
[19] |
郑萌. 基于改进注意力机制模型的智能英语翻译方法研究[J]. 电子科技, 2020, 33(11):84-87.
|
|
Zhang Meng. Research on intelligentEnglish translation based on improved attention mechanism model[J]. Electronic Science and Technology, 2020, 33(11):84-87.
|
[20] |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]. Salt Lake: Proceedings of the IEEE Conference on Computer vision and Pattern Recognition, 2018.
|
[21] |
Chen K, Loy C C, Gong S, et al. Feature mining for localised crowd counting[C]. London: Proceedings of the British Machine Vision Conference, 2012.
|
[22] |
Xiong F, Shi X, Yeung D Y. Spatiotemporal modeling for crowd counting in videos[C]. Venice: Proceedings of the IEEE International Conference on Computer Vision, 2017.
|
[23] |
Idrees H, Tayyab M, Athrey K, et al. Composition loss for counting, density map estimation and localization in dense crowds[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018.
|
[24] |
Sheng B, Shen C, Lin G, et al. Crowd counting via weighted VLAD on a dense attribute feature map[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 28(8):1788-1797.
doi: 10.1109/TCSVT.2016.2637379
|