[1] |
Guy I, Zwerdling N, Ronen I, et al. Social media recommendation based on people and tags[C]. Geneva: Proceedings of the Thirty-third International ACM SIGIR Conference on Research and Development in Information Retrieval, 2010.
|
[2] |
Phelan O, McCarthy K, Smyth B. Using twitter to recommend real-time topical news[C]. New York: Proceedings of the Third ACM Conference on Recommender Systems, 2009.
|
[3] |
McAuley J, Leskovec J. Hidden factors and hidden topics: Understanding rating dimensions with review text[C]. Hong Kong: Proceedings of the Seventh ACM Conference on Recommender Systems, 2013.
|
[4] |
Chong W, Blei D M. Collaborative topic modeling for recommending scientific articles[C]. San Diego: Proceedings of the Seventeenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2011.
|
[5] |
Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8):30-37.
|
[6] |
Dai A M, Le Q V. Semi-supervised sequence learning[C]. Cambridge: Proceedings of the Twenty-eighth International Conference on Neural Information Processing Systems, 2015.
|
[7] |
Schein A I, Popescul A, Ungar L H, et al. Methods and metrics for cold-start recommendations[C]. Tampere: Proceedings of the Twenty-fifth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2002.
|
[8] |
Wang H, Wang N Y, Yeung D Y. Collaborative deep learning for recommender systems[C]. Sydney: Proceedings of the Twenty-first ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015.
|
[9] |
Melville P, Mooney R J, Nagarajan R. Content-boosted collaborative filtering for improved recommendations[C]. Edmonton: Proceedings of the Eighteenth National Conference on Artificial Intelligence, 2002.
|
[10] |
Agarwal D, Chen B C. Regression-based latent factor models[C]. Paris: Proceedings of the Fifteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009.
|
[11] |
Singh A P, Gordon G J. Relational learning via collective matrix factorization[C]. Las Vegas: Proceedings of the Fourteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2008.
|
[12] |
Ma H, Yang H, Lyu M R, et al. SoRec:Social recommendation using probabilistic matrix factorization[C]. Napa Valley: Proceedings of the Seventeenth ACM Conference on Information and Knowledge Management, 2008.
|
[13] |
Almahairi A, Kastner K, Cho K, et al. Learning distributed representations from reviews for collaborative filtering[C]. Vienna: Proceedings of the Ninth ACM Conference on Recommender Systems, 2015.
|
[14] |
Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality[C]. New York: Proceedings of the Twenty-sixth International Conference on Neural Information Processing Systems, 2013.
|
[15] |
彭慧洁. 融合多维信息的协同过滤算法研究[J]. 电子科技, 2017, 30(2):42-44.
|
|
Peng Huijie. The research on collaborative filtering algorithm of multi-dimensional information[J]. Electronic Science and Technology, 2017, 30(2):42-44.
|
[16] |
Bell R M, Koren Y. Lessons from the netflix prize challenge[J]. ACM SIGKDD Explorations Newsletter, 2007, 9(2):75-79.
doi: 10.1145/1345448.1345465
|
[17] |
Krestel R, Fankhauser P, Nejdl W. Latent dirichlet allocation for tag recommendation[C]. New York: Proceedings of the Third ACM Conference on Recommender Systems, 2009.
|
[18] |
Sedhain S, Menon A K, Sanner S, et al. Autorec: Autoencoders meet collaborative filtering[C]. Florence: Proceedings of the Twenty-fourth International Conference on World Wide Web, 2015.
|
[19] |
He H, McAuley J. VBPR: Visual bayesian personalized ranking from implicit feedback[C]. Phoenix: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016.
|
[20] |
Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2):157-166.
doi: 10.1109/72.279181
pmid: 18267787
|
[21] |
Cho K, Merrienboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]. Doha: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2014.
|
[22] |
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
doi: 10.1162/neco.1997.9.8.1735
pmid: 9377276
|
[23] |
Li J, Chen X L, Hovy E, et al. Visualizing and understanding neural models in NLP[C]. San Diego:Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016.
|
[24] |
Weston J, Bengio S, Usunier N. Wsabie: Scaling up to large vocabulary image annotation[C]. Barcelona: Proceedings of the Twenty-second International Joint Conference on Artificial Intelligence, 2011.
|