电子科技 ›› 2024, Vol. 37 ›› Issue (5): 18-24.doi: 10.16180/j.cnki.issn1007-7820.2024.05.003

• • 上一篇    下一篇

基于深度学习的城市内涝区域车辆检测与分析

夏榕成, 刘德儿   

  1. 江西理工大学 土木与测绘工程学院,江西 赣州 341000
  • 收稿日期:2022-12-12 出版日期:2024-05-15 发布日期:2024-05-21
  • 作者简介:夏榕成(1997-),男,硕士研究生。研究方向:点云深度学习。
    刘德儿(1978-),男,博士,教授。研究方向:三维激光点云智能处理、计算机视觉等。
  • 基金资助:
    国家自然科学基金(42271434);江西省自然科学基金项目(20202BAB202025)

Vehicle Detection and Analysis in Urban Waterlogging Area Based on Deep Learning

XIA Rongcheng, LIU Deer   

  1. School of Civil and Surveying Engineering,Jiangxi University of Technology,Ganzhou 341000,China
  • Received:2022-12-12 Online:2024-05-15 Published:2024-05-21
  • Supported by:
    National Natural Science Foundation of China(42271434);Jiangxi Natural Science Foundation Project(20202BAB202025)

摘要:

在城市内涝场景当中,较多人与车辆被困于积水中,给大众生活带来不利影响。随着计算机技术的快速发展,深度学习在解决实际问题中的运用也越来越广泛。文中提出了一种利用TensorFlow深度学习框架搭建MaskR-CNN(Regions with Convolutional Neural Networks Features)模型的方法,对城市内涝场景的积水区进行检测,检测效果良好,mAP(mean Average Precision)值达到89%。同时,基于YOLOv5(You Only Look Once version 5 )模型,采用密集帧间差运算对处于积水区中的人车进行追踪,追踪精度达到90%左右,并使用YOLOv5外挂ResNet(Residual Network)实现了对内涝场景中的车辆进行淹没危险度分析。实验结果表明,文中所用模型的车辆危险度检测效果优于其他模型。

关键词: 城市内涝, MaskR-CNN模型, TensorFlow, 深度学习, 目标检测, YOLOv5, ResNet, 危险度分析

Abstract:

In the urban waterlogging scene, many people and vehicles are trapped in the water, which brings adverse effects to the public life. With the rapid development of computer technology, deep learning is more and more widely used in solving practical problems. This study proposes a method to build a MaskR-CNN(Regions with Convolutional Neural Networks Features) model using TensorFlow deep learning framework, which has achieved good detection results in the detection of waterlogging areas in urban waterlogging scenes, with the mAP(mean Average Precision) value reaching 89%. Based on the YOLOv5(You Only Look Once version 5) model, the dense interframe difference operation is used to track people and vehicles in waterlogged areas, and the tracking accuracy reached about 90%. Moreover, ResNet(Residual Network) attached to YOLOv5 is used to analyze the risk of submersion of vehicles in waterlogging scenarios. The experimental results show that the vehicle risk detection effect of the proposed model is better than other models.

Key words: urban waterlogging, MaskR-CNN model, TensorFlow, deep learning, target detection, YOLOv5, ResNet, risk analysis

中图分类号: 

  • TU992.25