[1] |
缪冉, 李菲菲, 陈虬. 基于卷积神经网络与多尺度空间编码的场景识别方法[J]. 电子科技, 2020, 33(12):54-58.
|
|
Miao Ran, Li Feifei, Chen Qiu. Scene recognition algorithm based on convolutional neural networks and multi-scale space encoding[J]. Electronic Science and Technology, 2020, 33(12):54-58.
|
[2] |
左斌, 李菲菲. 基于注意力机制和Inf-Net的新冠肺炎图像分割方法[J]. 电子科技, 2023, 36(2):22-28.
|
|
Zuo Bin, Li Feifei. COVID-19 image segmentation method based on attention mechanism and INF-NET[J]. Electronic Science and Tecnology, 2023, 36(2):22-28.
|
[3] |
Zhang L, Wang X, Yang D, et al. Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation[J]. IEEE Transactions on Medical Imaging, 2020, 39(7):2531-2540.
doi: 10.1109/TMI.2020.2973595
pmid: 32070947
|
[4] |
Tao Q, Yan W, Wang Y, et al. Deep learning-based method for fully automatic quantification of left ventricle function from cine MR images:A multivendor,multicenter study[J]. Radiology, 2019, 290(1):81-88.
doi: 10.1148/radiol.2018180513
|
[5] |
Bian C, Yuan C, Wang J, et al. Uncertainty-aware domain alignment for anatomical structure segmentation[J]. Medical Image Analysis, 2020, 64(8):101732-101746.
doi: 10.1016/j.media.2020.101732
|
[6] |
Li D, Yang Y, Song Y Z, et al. Learning to generalize:Meta-learning for domain generalization[C]. New Orleans: Proceedings of the AAAI Conference on Artificial Intelligence, 2018:3533-3541.
|
[7] |
Zhang L, Wang X, Yang D, et al. Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation[J]. IEEE Transactions on Medical Imaging, 2020, 39(7):2531-2540.
doi: 10.1109/TMI.2020.2973595
pmid: 32070947
|
[8] |
Liu C, Wang L, Li K, et al. Domain generalization via feature variation decorrelation[C]. New York: Proceedings of the Twenty-ninth ACM International Conference on Multimedia, 2021:1517-1526.
|
[9] |
Li H, Pan S J, Wang S, et al. Domain generalization with adversarial feature learning[C]. Salt Lake City: IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018:620-631.
|
[10] |
Dou Q, Daniel C, Kamnitsas K, et al. Domain generalization via model-agnostic learning of semantic features[C]. Curran: Advances in Neural Information Processing Systems, 2019:2331-2339.
|
[11] |
Liu Q, Dou Q, Heng P A. Shape-aware meta-learning for generalizing prostate MRI segmentation to unseen domains[C]. Lima: Medical Image Computing and Computer Assisted Intervention, 2020:852-863.
|
[12] |
Khandelwal P, Yushkevich P. Domain generalizer:A few-shot meta learning framework for domain generalization in medical imaging[J]. Domain Adaptation and Representation Transfer,and Distributed and Collaborative Learning, 2020, 11(9):73-84.
|
[13] |
Liu X, Thermos S, O'Neil A, et al. Semi-supervised meta-learning with disentanglement for domain-generalised medical image segmentation[C]. Strasbourg: Medical Image Computing and Computer Assisted Intervention, 2021:3592-3603.
|
[14] |
Elsken T, Metzen J H, Hutter F. Neural architecture search: A survey[J]. Journal of Machine Learning Research, 2019, 20(1):1997-2017.
|
[15] |
Hospedales T, Antoniou A, Micaelli P, et al. Meta-learning in neural networks:A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 5149-5169.
|
[16] |
Li D, Zhang J, Yang Y, et al. Episodic training for domain generalization[C]. Long Beach: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019:78-86.
|
[17] |
Weng Y, Zhou T, Li Y, et al. NAS-Unet:Neural architecture search for medical image segmentation[J]. IEEE Access, 2019, 7(3):44247-44257.
doi: 10.1109/Access.6287639
|
[18] |
Zhou Z, Siddiquee M M R, Tajbakhsh N, et al. UNet++: Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6):1856-1867.
doi: 10.1109/TMI.2019.2959609
pmid: 31841402
|
[19] |
Liu H, Simonyan K, Yang Y. DARTS:Differentiable architecture search[C]. Vancouver: International Conference on Learning Representations, 2018:931-938.
|
[20] |
Chartsias A, Joyce T, Papanastasiou G, et al. Disentangled representation learning in cardiac image analysis[J]. Medical Image Analysis, 2019, 58(C):101535-101549.
|
[21] |
Huang X, Liu M Y, Belongie S, et al. Multimodal unsupervised image-to-image translation[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018:690-701.
|
[22] |
Ma W D K, Lewis J P, Kleijn W B. The HSIC bottleneck: Deep learning without back-propagation[C]. New York: Proceedings of the AAAI Conference on Artificial Intelligence, 2020:529-537.
|
[23] |
Li H, Wang Y, Wan R, et al. Domain generalization for medical imaging classification with linear-dependency regularization[C]. Vancouver: Advances in Neural Information Processing Systems, 2020:1017-1029.
|
[24] |
Paszke A, Gross S, Massa F, et al. PyTorch:An imperative style,high-performance deep learning library[C]. Vancouver: Advances in Neural Information Processing Systems, 2019:998-1007.
|
[25] |
Isensee F, Jaeger P F, Kohl S A A, et al. nnU-Net:A self-configuring method for deep learning-based biomedical image segmentation[J]. Nature Methods,Nature Publishing Group, 2021, 18(2):203-211.
|
[26] |
Liu X, Thermos S, Chartsias A, et al. Disentangled representations for domain-generalized cardiac segmentation[C]. Lima: International Workshop on Statistical Atlases and Computational Models of the Heart, 2020:806-811.
|