[1] |
Al-Mamari A. Atherosclerosis and physical activity[J]. Oman Medical Journal, 2009, 24(3):173-181.
doi: 10.5001/omj.2009.34
pmid: 22224180
|
[2] |
Barnett P A, Spence J D, Manuck S B, et al. Psychological stress and the progression of carotid artery disease[J]. Journal of Hypertension, 1997, 15(1):49-55.
pmid: 9050970
|
[3] |
Akkus Z, Carvalho D, Oord S, et al. Fully automated carotid plaque segmentation in combined cont-rast-enhanced and Bmode ultrasound[J]. Ultrasound in Medicine and Biology, 2015, 41(2):517-531.
|
[4] |
Benjamin E J, Virani S S, Callaway C W, et al. Heart disease and stroke statistics-2019 update:A report from the american heart association[J]. Cirulation, 2019, 139(10):506-528.
|
[5] |
He K, Lian C, Zhang B, et al. HF-UNet:Learning hierarchically inter-task relevance in multi-task U-Net for accurate prostate segmentation in CT images[J]. IEEE Transaction on Medical Imaging, 2021, 40(8):2118-2128.
|
[6] |
Zhou R, Guo F, Azarpazhooh M, et al. A voxel-based fully convolution network and continuous max-flow for carotid vessel-wall-volume segmentateon from 3D ultrasound images[J]. IEEE Transaction on Medical Imaging, 2020, 39(9):2844-2855.
|
[7] |
Hossain M M, AlMuhanna K, Zhao L, et al. Semia-utomatic segmentation of atherosclerotic carotid artery wall volume using 3D ultrasound imaging[J]. Medical Physics, 2015, 42(4):2029-2037.
doi: 10.1118/1.4915925
pmid: 25832093
|
[8] |
司明明, 陈玮, 胡春燕, 等. 融合Resnet50和U-Net的眼底彩色血管图像分割[J]. 电子科技, 2021, 34(8):19-24.
|
|
Si Mingming, Chen Wei, Hu Chunyan, et al. Fundus blood vessel image segmentation combining Resnet50 and U-Net[J]. Electronic Science and Technology, 2021, 34(8):19-24.
|
[9] |
Liguori C, Paolillo A, Pirtrosanto A. An automatic measurement system for the evaluation of carotidintima-media thickness[J]. IEEE Transactions on Instrumentation and Measurement, 2001, 50(6):1684-1691.
|
[10] |
Destrempes F, Meunier J, Giroux M, et al. Segmentation of plaques in sequences of ultrasonic B mode images of carotid arteries based on motion estimation and a Bayesian model[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(8):2202-2211.
|
[11] |
Delsanto S, Molinari F, Giustetto P, et al. Characterization of a completely user-independent algorithm for carotid artery segmentation in 2D ultrasound images[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(4):1265-1274.
|
[12] |
Bonanno L, Sottile F, Ciurleo R, et al. Automatic algorithm for segmentation of atheroscle-rotic carotid plaque[J]. Journal of Stroke and Cerebrovascular Diseases, 2017, 26(2):411-416.
|
[13] |
Menchon-Lara R M, Sancho-Gomez J L, Bueno-C-respo A. Early-stage atherosclerosis detection using deep learning over carotid ultrasound images[J]. Applied Soft Computing, 2016, 49(1):616-628.
|
[14] |
Shen D, Wu G, Suk H I. Deep learning in medical image analysis[J]. Annual Review of Biomedical Engineering, 2017, 19(7):221-248.
|
[15] |
Zhou R, Fenster A, Xia Y, et al. Deep learning-based carotid media-adventitia and lumen-intima boundary segmentation from three-dimensional ultrasound images[J]. Medical Physics, 2019, 46(7):3180-3193.
doi: 10.1002/mp.13581
pmid: 31071228
|
[16] |
Azzopardi C, Camilleri K P, Hicks Y A. Bimodal automated carotid ultrasound segmentation using geometrically constrained deep neural networks[J]. IEEE Journal of Biomedical Health Informatic, 2020, 24(4):1004-1015.
|
[17] |
Mi S, Bao Q, Wei Z, et al. MBFF-Net:Multi-branch feature fusion network for carotid plaque segmentation in ultrasound[C]. Strasbourg: Medical Image Computing and Computer Assisted Intervention the Twenty-fourth International Conference, 2021:313-322.
|
[18] |
闫超, 孙占全, 田恩刚, 等. 基于深度学习的医学图像分割技术研究进展[J]. 电子科技, 2021, 34(2):7-11.
|
|
Yan Chao, Sun Zhanquan, Tian Engang, et al. Research progress of medical image segmentation based on deep learning[J]. Electronic Science and Technology, 2021, 34(2):7-11.
|
[19] |
Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]. Munich: Medical Image Computing and Computer-Assisted Intervention the Eighteenth International Conference, 2015:234-241.
|
[20] |
Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]. Holunono: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:2881-2890.
|
[21] |
Gu C, Cheng G, Fu H, et al. CE-Net:Context encoder network for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2019, 38(10):2281-2292.
|
[22] |
Yang M, Yu K, Zhang C, et al. Denseaspp for semantic segmentation in street scenes[C]. Salt Lack City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:3684-3692.
|
[23] |
Yurtkulu S C, Sahin Y H, Unal G. Semantic segmentation with extended DeepLabv3 architecture[C]. Sivas: IEEE the Twenty-seventh Signal Processing and Communications Applications Conference, 2019:1-4.
|
[24] |
Lin G, Milan A, Shen C, et al. RefineNet:Multi-path refinement networks for high-resolution semantic segmentation[C]. Holunono: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:1925-1934.
|
[25] |
Liu Z, Lin Y, Cao Y, et al. Swin transformer:Hierarchical vision transformer using shifted windows[C]. Montreal: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021:10012-10022.
|
[26] |
Abraham N, Khan N M. A novel focal tversky loss function withimproved attention U-Net for lesion segmentation[C]. Venice: IEEE the Sixteenth International Symposium on Biomedical Imaging, 2019:683-687.
|