[1] |
代杰杰. 基于深度学习的变压器状态评估技术研究[D]. 上海: 上海交通大学, 2018:2-4.
|
|
Dai Jiejie. Research on transformer state assessment based on deep learning[D]. Shanghai: Shanghai Jiao Tong University, 2018:2-4.
|
[2] |
邓焱. 基于多维信息融合的变压器状态评估与故障诊断方法研究[D]. 广州: 华南理工大学, 2018:4-10.
|
|
Deng Yan. A study on transformer state evaluation and fault diagnosis based on multi-dimensional information fusion[D]. Guangzhou: South China Universityof Technology, 2018:4-10.
|
[3] |
Gao Z W, Cecati C, Ding S X. A survey of fault diagnosis and fault-tolerant techniques—Part I:Fault diagnosis with model-based and signal-based approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6):3757-3767.
doi: 10.1109/TIE.2015.2417501
|
[4] |
Zhang X, Zhu M Z. Research on transformer fault diagnosis method based on rough set optimization BP neural network[C]. Beijing: The Sencond IEEE Conference on Energy Internet and Energy System Integration, 2018:1-5.
|
[5] |
尹金良, 刘玲玲. 代价敏感相关向量机的研究及其在变压器故障诊断中的应用[J]. 电力自动化设备, 2014, 34(5):111-115.
|
|
Yin Jinliang, Liu Lingling. CS-RVM and its application in fault diagnosis of power transformers[J]. Electric Power Automation Equipment, 2014, 34(5):111-115.
|
[6] |
宋志杰, 王健. 模糊聚类和LM算法改进BP神经网络的变压器故障诊断[J]. 高压电器, 2013, 55(5):54-59.
|
|
Song Zhijie, Wang Jian. Transformer fault diagnosis based on BP neural network optimized by fuzzy clustering and LM algorithm[J]. High Voltage Apparatus, 2013, 55(5):54-59.
|
[7] |
王德文, 雷倩. 基于贝叶斯正则化深度信念网络的电力变压器故障诊断方法[J]. 电力自动化设备, 2018, 38(5):129-135.
|
|
Wang Dewen, Lei Qian. Fault diagnosis of power transformer based on BR-DBN[J]. Electric Power Automation Equipment, 2018, 38(5):129-135.
|
[8] |
许静. 基于受限玻尔兹曼机的变压器故障诊断[D]. 北京: 华北电力大学, 2017:12-13.
|
|
Xu Jing. Transformer fault diagnosis using restricted boltzmann machine[D]. Beijing: North China Electric Power University, 2017:12-13.
|
[9] |
Zhang L J, Sheng G H, Hou H J, et al. A fault diagnosis method of power transformer based on cost sensitive one-dimensional convolution neural network[C]. Chengdu: The Fifth Asia Conference on Power and Electrical Engineering, 2020:1824-1828.
|
[10] |
Lin N, Guo Z W. Transformer fault diagnosis model based on FI-CNN method[C]. Zhengzhou: International Conference on Intelligent Traffic Systems and Smart City, 2022:9-16.
|
[11] |
Ma L C, Zhang Y, Sun P, et al. Research on fault diagnosis and optimization of crusher based on atom search algorithm-BP neural network[C]. Hefei: Chinese Control And Decision Conference, 2020:671-676.
|
[12] |
Bai J Y, Zhang J W. BGADAM:Boosting based genetic-evolutionary ADAM for neural network optimization[C]. Qingdao: International Joint Conference on Neural Networks, 2021:1-8.
|
[13] |
Lai G X, Li F P, Feng J Q. A LPSO-SGD algorithm for the optimization of convolutional neural network[C]. Wellington: IEEE Congress on Evolutionary Computation, 2019:1038-1043.
|
[14] |
Loshchilov I, Hinton G, Krizhevsky A. Dropout:A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1):1929-1958.
|
[15] |
Zhang Z J. Improved adam optimizer for deep neuralnetworks[C]. Banff: IEEE/ACM the Twenty-sixth International Symposium on Quality of Service, 2018:1-2.
|
[16] |
徐康健, 汪卫国. GB/T7252—2001《变压器油中溶解气体分析和判断导则》中一问题的探讨[J]. 电力技术, 2009, 15(2):62-63.
|
|
Xu Kangjian, Wang Weiguo. GB/T7252—2001 Guidelines for the analysis and judgment of dissolved gasesin transformer oil[J]. Electric Power Technology, 2009, 15(2):62-63.
|
[17] |
尹金良. 基于相关向量机的油浸式电力变压器故障诊断方法研究[D]. 北京: 华北电力大学, 2013:7-10.
|
|
Yin Jinliang. Research on oil-immersed power transformer fault diagnosis based on relevance vector machine[D]. Beijing: North China Electric Power University, 2013:7-10.
|
[18] |
李志恒, 何军, 胡昭华. 基于dropout正则化的半监督域自适应方法[J]. 计算机应用研究, 2021, 38(2):591-594,599.
|
|
Li Zhiheng, He Jun, Hu Zhaohua. Semi-supervised dom-ain adaptive method based on dropout regularization[J]. Application Research of Computers, 2021, 38(2):591-594,599.
|