Electronic Science and Technology ›› 2024, Vol. 37 ›› Issue (1): 17-23.doi: 10.16180/j.cnki.issn1007-7820.2024.01.003
Previous Articles Next Articles
YU Zhihong,LI Feifei
Received:
2022-08-24
Online:
2024-01-15
Published:
2024-01-11
Supported by:
CLC Number:
YU Zhihong,LI Feifei. Semi-Supervised Medical Image Segmentation Method Based on Meta-Learning and Neural Architecture Search[J].Electronic Science and Technology, 2024, 37(1): 17-23.
Table 2.
The results of M&Ms on Dice with 5% labeled data"
源域 | 目标域 | nnUNet[ | SDNet+Aug[ | LDDG[ | SAML[ | DGNet[ | 本文方法 | |
---|---|---|---|---|---|---|---|---|
5% | BCD | A | 65.3017.0 | 71.2113.0 | 66.229.1 | 67.1110.0 | 72.4012.0 | 75.1211.3 |
ACD | B | 79.7310.0 | 77.3110.0 | 69.498.3 | 76.357.9 | 80.309.1 | 80.938.2 | |
ABD | C | 78.0611.0 | 81.408.0 | 73.409.8 | 77.438.3 | 82.516.6 | 80.866.1 | |
ABC | D | 81.258.3 | 79.957.8 | 75.668.5 | 78.645.8 | 83.775.1 | 81.608.3 | |
平均值 | 76.096.3 | 77.473.9 | 71.293.6 | 74.884.6 | 79.754.4 | 79.628.5 |
Table 3.
The results of M&Ms on Dice with 2% labeled data"
源域 | 目标域 | nnUNet[ | SDNet+Aug[ | LDDG[ | SAML[ | DGNet[ | 本文方法 | |
---|---|---|---|---|---|---|---|---|
2% | BCD | A | 52.8719.0 | 54.4818.0 | 59.4712.0 | 56.31 13.0 | 66.01 12.0 | 67.95 14.6 |
ACD | B | 64.6317.0 | 67.8114.0 | 56.1614.0 | 56.3215.0 | 72.72 10.0 | 74.0710.1 | |
ABD | C | 72.9714.0 | 76.4612.0 | 68.2111.0 | 75.708.7 | 77.5410.0 | 79.788.7 | |
ABC | D | 73.2711.0 | 74.3511.0 | 68.56 10.0 | 69.949.8 | 75.148.4 | 74.3312.5 | |
平均值 | 65.948.3 | 68.288.6 | 63.165.4 | 64.57 8.5 | 72.854.3 | 74.0311.5 |
Table 4.
The results of M&Ms on Hausdorff distance with 5% labeled data"
源域 | 目标域 | nnUNet[ | SDNet+Aug[ | LDDG[ | SAML[ | DGNet[ | 本文方法 | |
---|---|---|---|---|---|---|---|---|
5% | BCD | A | 23.046.7 | 22.846.3 | 23.35 5.7 | 23.105.9 | 22.556.6 | 18.385.4 |
ACD | B | 18.184.7 | 20.265.5 | 20.564.7 | 18.974.9 | 19.376.4 | 15.954.5 | |
ABD | C | 16.444.2 | 16.223.9 | 17.143.3 | 16.293.2 | 15.773.8 | 13.772.8 | |
ABC | D | 15.244.2 | 15.15 3.3 | 15.803.2 | 15.583.2 | 14.242.8 | 13.433.3 | |
平均值 | 18.223.0 | 18.623.1 | 19.213.0 | 18.492.9 | 17.983.2 | 15.384.0 |
Table 5.
The results of M&Ms on Hausdorff distance with 2% labeled data"
源域 | 目标域 | nnUNet[ | SDNet+Aug[ | LDDG[ | SAML[ | DGNet[ | 本文方法 | |
---|---|---|---|---|---|---|---|---|
2% | BCD | A | 26.487.5 | 24.697.0 | 25.565.9 | 25.575.7 | 23.556.5 | 20.42 6.0 |
ACD | B | 23.11 6.8 | 21.846.2 | 25.445.2 | 24.915.5 | 19.956.3 | 17.835.2 | |
ABD | C | 16.754.6 | 16.574.2 | 18.983.9 | 16.463.5 | 16.294.0 | 14.193.1 | |
ABC | D | 17.514.9 | 17.574.1 | 18.083.8 | 17.943.8 | 17.484.7 | 15.764.1 | |
平均值 | 20.964.0 | 20.173.3 | 22.023.5 | 21.224.1 | 19.322.8 | 17.054.6 |
[1] | 缪冉, 李菲菲, 陈虬. 基于卷积神经网络与多尺度空间编码的场景识别方法[J]. 电子科技, 2020, 33(12):54-58. |
Miao Ran, Li Feifei, Chen Qiu. Scene recognition algorithm based on convolutional neural networks and multi-scale space encoding[J]. Electronic Science and Technology, 2020, 33(12):54-58. | |
[2] | 左斌, 李菲菲. 基于注意力机制和Inf-Net的新冠肺炎图像分割方法[J]. 电子科技, 2023, 36(2):22-28. |
Zuo Bin, Li Feifei. COVID-19 image segmentation method based on attention mechanism and INF-NET[J]. Electronic Science and Tecnology, 2023, 36(2):22-28. | |
[3] |
Zhang L, Wang X, Yang D, et al. Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation[J]. IEEE Transactions on Medical Imaging, 2020, 39(7):2531-2540.
doi: 10.1109/TMI.2020.2973595 pmid: 32070947 |
[4] |
Tao Q, Yan W, Wang Y, et al. Deep learning-based method for fully automatic quantification of left ventricle function from cine MR images:A multivendor,multicenter study[J]. Radiology, 2019, 290(1):81-88.
doi: 10.1148/radiol.2018180513 |
[5] |
Bian C, Yuan C, Wang J, et al. Uncertainty-aware domain alignment for anatomical structure segmentation[J]. Medical Image Analysis, 2020, 64(8):101732-101746.
doi: 10.1016/j.media.2020.101732 |
[6] | Li D, Yang Y, Song Y Z, et al. Learning to generalize:Meta-learning for domain generalization[C]. New Orleans: Proceedings of the AAAI Conference on Artificial Intelligence, 2018:3533-3541. |
[7] |
Zhang L, Wang X, Yang D, et al. Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation[J]. IEEE Transactions on Medical Imaging, 2020, 39(7):2531-2540.
doi: 10.1109/TMI.2020.2973595 pmid: 32070947 |
[8] | Liu C, Wang L, Li K, et al. Domain generalization via feature variation decorrelation[C]. New York: Proceedings of the Twenty-ninth ACM International Conference on Multimedia, 2021:1517-1526. |
[9] | Li H, Pan S J, Wang S, et al. Domain generalization with adversarial feature learning[C]. Salt Lake City: IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018:620-631. |
[10] | Dou Q, Daniel C, Kamnitsas K, et al. Domain generalization via model-agnostic learning of semantic features[C]. Curran: Advances in Neural Information Processing Systems, 2019:2331-2339. |
[11] | Liu Q, Dou Q, Heng P A. Shape-aware meta-learning for generalizing prostate MRI segmentation to unseen domains[C]. Lima: Medical Image Computing and Computer Assisted Intervention, 2020:852-863. |
[12] | Khandelwal P, Yushkevich P. Domain generalizer:A few-shot meta learning framework for domain generalization in medical imaging[J]. Domain Adaptation and Representation Transfer,and Distributed and Collaborative Learning, 2020, 11(9):73-84. |
[13] | Liu X, Thermos S, O'Neil A, et al. Semi-supervised meta-learning with disentanglement for domain-generalised medical image segmentation[C]. Strasbourg: Medical Image Computing and Computer Assisted Intervention, 2021:3592-3603. |
[14] | Elsken T, Metzen J H, Hutter F. Neural architecture search: A survey[J]. Journal of Machine Learning Research, 2019, 20(1):1997-2017. |
[15] | Hospedales T, Antoniou A, Micaelli P, et al. Meta-learning in neural networks:A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 5149-5169. |
[16] | Li D, Zhang J, Yang Y, et al. Episodic training for domain generalization[C]. Long Beach: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019:78-86. |
[17] |
Weng Y, Zhou T, Li Y, et al. NAS-Unet:Neural architecture search for medical image segmentation[J]. IEEE Access, 2019, 7(3):44247-44257.
doi: 10.1109/Access.6287639 |
[18] |
Zhou Z, Siddiquee M M R, Tajbakhsh N, et al. UNet++: Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6):1856-1867.
doi: 10.1109/TMI.2019.2959609 pmid: 31841402 |
[19] | Liu H, Simonyan K, Yang Y. DARTS:Differentiable architecture search[C]. Vancouver: International Conference on Learning Representations, 2018:931-938. |
[20] | Chartsias A, Joyce T, Papanastasiou G, et al. Disentangled representation learning in cardiac image analysis[J]. Medical Image Analysis, 2019, 58(C):101535-101549. |
[21] | Huang X, Liu M Y, Belongie S, et al. Multimodal unsupervised image-to-image translation[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018:690-701. |
[22] | Ma W D K, Lewis J P, Kleijn W B. The HSIC bottleneck: Deep learning without back-propagation[C]. New York: Proceedings of the AAAI Conference on Artificial Intelligence, 2020:529-537. |
[23] | Li H, Wang Y, Wan R, et al. Domain generalization for medical imaging classification with linear-dependency regularization[C]. Vancouver: Advances in Neural Information Processing Systems, 2020:1017-1029. |
[24] | Paszke A, Gross S, Massa F, et al. PyTorch:An imperative style,high-performance deep learning library[C]. Vancouver: Advances in Neural Information Processing Systems, 2019:998-1007. |
[25] | Isensee F, Jaeger P F, Kohl S A A, et al. nnU-Net:A self-configuring method for deep learning-based biomedical image segmentation[J]. Nature Methods,Nature Publishing Group, 2021, 18(2):203-211. |
[26] | Liu X, Thermos S, Chartsias A, et al. Disentangled representations for domain-generalized cardiac segmentation[C]. Lima: International Workshop on Statistical Atlases and Computational Models of the Heart, 2020:806-811. |
[1] | LI Zenghui,WANG Wei. Research Progress of Medical Image Segmentation Method Based on Deep Learning [J]. Electronic Science and Technology, 2024, 37(1): 72-80. |
[2] | WANG Jiawei,YU Xiao. Review of Text Classification Research Based on Deep Learning [J]. Electronic Science and Technology, 2024, 37(1): 81-86. |
[3] | HUANG Zixuan,LI Qiaoxing. Research on Identification of Urban Illegal Vehicles Based on Random Forest Model [J]. Electronic Science and Technology, 2024, 37(1): 66-71. |
[4] | Bin ,WANG Sen. Visual Detection of Structural Cracks Using Depth Deformable Contour ModelLAI [J]. Electronic Science and Technology, 2023, 36(9): 35-40. |
[5] | YUE Shengyao,XU Baiqiang,XU Guidong,XU Chenguang,ZHANG Sai. Super-Resolution Imaging of Laminate Debonding Defects via Deconvolutional Neural Network and Ultrasound Guided Waves [J]. Electronic Science and Technology, 2023, 36(8): 7-13. |
[6] | SUN Hong,ZHAO Yingzhi. Lightweight Generative Adversarial Networks Based on Multi-Scale Gradient [J]. Electronic Science and Technology, 2023, 36(7): 32-38. |
[7] | OU Jingyi,TIAN Ying,XIANG Xin,SONG Qizhe. Fault Diagnosis of Few Shot Industrial Process Based on Transfer BN-CNN Framework [J]. Electronic Science and Technology, 2023, 36(7): 49-55. |
[8] | ZENG Xinxin,ZHANG Hongyan. A Farmland Parcel Extraction Network Based on Multi-Scale Semantic Information Enhancement [J]. Electronic Science and Technology, 2023, 36(7): 70-74. |
[9] | LI Keran,CHEN Sheng,KE Panpan. A Method of Facial Mask Segmentation Based on CA-Net [J]. Electronic Science and Technology, 2023, 36(6): 64-71. |
[10] | SHI Jianke,QIAO Meiying,LI Bingfeng,ZHAO Yan. Underwater Occlusion Target Detection Algorithm Based on Attention Mechanism [J]. Electronic Science and Technology, 2023, 36(5): 62-70. |
[11] | LIU Yuwei,CAO Min,FENG Haojia. CNAS Recognition Criteria Automatic Benchmarking System Based on Natural Language Processing [J]. Electronic Science and Technology, 2023, 36(5): 28-33. |
[12] | ZHENG Yuheng,FU Dongxiang. UAV Detection Based on Slim-YOLOv4 with Embedded Device [J]. Electronic Science and Technology, 2023, 36(5): 55-61. |
[13] | LUO Ruipeng,FENG Mingke,HUANG Xin,ZOU Renling,LI Dan. A Review of Research on EEG Signal Preprocessing Methods [J]. Electronic Science and Technology, 2023, 36(4): 36-43. |
[14] | CUI Zhuodong,CHEN Wei,YIN Zhong. Helmet Wearing Detection Based on Enhanced Feature Fusion Network [J]. Electronic Science and Technology, 2023, 36(4): 44-51. |
[15] | SUN Hong,ZHANG Yuxiang. Super-Resolution Image Reconstruction Algorithm Based on Multi-Feature Gated Feedback Residual Network [J]. Electronic Science and Technology, 2023, 36(4): 65-70. |
|