Electronic Science and Technology ›› 2024, Vol. 37 ›› Issue (2): 55-60.doi: 10.16180/j.cnki.issn1007-7820.2024.02.008
Previous Articles Next Articles
NAN Jiao,SUN Zhanquan
Received:
2022-09-23
Online:
2024-02-15
Published:
2024-01-18
Supported by:
CLC Number:
NAN Jiao,SUN Zhanquan. Sorting Method of Multi Leads ECG Based on Mutual Information[J].Electronic Science and Technology, 2024, 37(2): 55-60.
Table 1.
Classification performance comparison for different sorting method based on mutual information in CPSC 2018"
模型 | 排序方法 | Ap | Hp | Jp | Rp | Pp | F1 |
---|---|---|---|---|---|---|---|
VGGNet | 默认排序 | 0.727 | 0.043 | 0.673 | 0.853 | 0.761 | 0.804 |
两端递增排序 | 0.727 | 0.042 | 0.681 | 0.853 | 0.771 | 0.810 | |
两端递减排序 | 0.699 | 0.045 | 0.659 | 0.841 | 0.752 | 0.794 | |
类最大树排序 | 0.724 | 0.042 | 0.680 | 0.854 | 0.769 | 0.809 | |
GoogLeNet | 默认排序 | 0.749 | 0.044 | 0.683 | 0.841 | 0.781 | 0.809 |
两端递增排序 | 0.758 | 0.041 | 0.696 | 0.848 | 0.795 | 0.820 | |
两端递减排序 | 0.717 | 0.044 | 0.669 | 0.853 | 0.755 | 0.802 | |
类最大树排序 | 0.749 | 0.043 | 0.682 | 0.829 | 0.794 | 0.811 | |
ResNet | 默认排序 | 0.729 | 0.042 | 0.678 | 0.854 | 0.767 | 0.808 |
两端递增排序 | 0.728 | 0.042 | 0.681 | 0.859 | 0.766 | 0.810 | |
两端递减排序 | 0.742 | 0.044 | 0.673 | 0.831 | 0.779 | 0.804 | |
类最大树排序 | 0.728 | 0.042 | 0.680 | 0.866 | 0.759 | 0.809 |
Table 2.
Classification performance comparison for different sort method based on mutual in ACTEC 2019"
模型 | 排序方法 | Ap | Hp | Jp | Rp | Pp | F1 |
---|---|---|---|---|---|---|---|
VGGNet | 默认排序 | 0.709 | 0.012 | 0.743 | 0.876 | 0.831 | 0.853 |
两端递增排序 | 0.741 | 0.011 | 0.756 | 0.903 | 0.823 | 0.861 | |
两端递减排序 | 0.710 | 0.012 | 0.738 | 0.881 | 0.819 | 0.849 | |
类最大树排序 | 0.718 | 0.012 | 0.748 | 0.880 | 0.832 | 0.855 | |
GoogLeNet | 默认排序 | 0.725 | 0.011 | 0.759 | 0.880 | 0.847 | 0.863 |
两端递增排序 | 0.738 | 0.011 | 0.767 | 0.888 | 0.849 | 0.868 | |
两端递减排序 | 0.724 | 0.012 | 0.755 | 0.874 | 0.847 | 0.860 | |
类最大树排序 | 0.726 | 0.011 | 0.759 | 0.876 | 0.850 | 0.863 | |
ResNet | 默认排序 | 0.727 | 0.011 | 0.750 | 0.887 | 0.832 | 0.859 |
两端递增排序 | 0.735 | 0.011 | 0.761 | 0.894 | 0.836 | 0.864 | |
两端递减排序 | 0.719 | 0.012 | 0.748 | 0.883 | 0.830 | 0.855 | |
类最大树排序 | 0.724 | 0.011 | 0.758 | 0.877 | 0.847 | 0.862 |
Table 3.
Classification performance comparison for different sort method based on mutual in PTB-XL"
模型 | 排序方法 | Ap | Hp | Jp | Rp | Pp | F1 |
---|---|---|---|---|---|---|---|
VGGNet | 默认排序 | 0.325 | 0.024 | 0.496 | 0.724 | 0.612 | 0.663 |
两端递增排序 | 0.325 | 0.024 | 0.501 | 0.704 | 0.635 | 0.668 | |
两端递减排序 | 0.333 | 0.024 | 0.499 | 0.702 | 0.633 | 0.665 | |
类最大树排序 | 0.316 | 0.024 | 0.493 | 0.717 | 0.613 | 0.661 | |
GoogLeNet | 默认排序 | 0.345 | 0.023 | 0.516 | 0.715 | 0.650 | 0.681 |
两端递增排序 | 0.357 | 0.022 | 0.522 | 0.745 | 0.636 | 0.686 | |
两端递减排序 | 0.336 | 0.022 | 0.513 | 0.757 | 0.614 | 0.678 | |
类最大树排序 | 0.344 | 0.023 | 0.515 | 0.735 | 0.632 | 0.680 | |
ResNet | 默认排序 | 0.352 | 0.023 | 0.514 | 0.740 | 0.628 | 0.679 |
两端递增排序 | 0.354 | 0.023 | 0.517 | 0.737 | 0.634 | 0.682 | |
两端递减排序 | 0.331 | 0.023 | 0.509 | 0.725 | 0.631 | 0.675 | |
类最大树排序 | 0.347 | 0.023 | 0.515 | 0.726 | 0.639 | 0.680 |
Table 4.
Classification performance comparison for 2-end increasing sorting method based on different metrics in CPSC 2018"
模型 | 排序方法 | Ap | Hp | Jp | Rp | Pp | F1 |
---|---|---|---|---|---|---|---|
VGGNet | 互信息 | 0.727 | 0.042 | 0.681 | 0.853 | 0.771 | 0.810 |
欧式距离 | 0.717 | 0.044 | 0.667 | 0.854 | 0.752 | 0.800 | |
余弦相似度 | 0.711 | 0.044 | 0.665 | 0.848 | 0.755 | 0.799 | |
相关系数 | 0.721 | 0.043 | 0.672 | 0.851 | 0.762 | 0.804 | |
GoogLeNet | 互信息 | 0.758 | 0.041 | 0.696 | 0.848 | 0.795 | 0.820 |
欧式距离 | 0.744 | 0.043 | 0.681 | 0.839 | 0.783 | 0.810 | |
余弦相似度 | 0.728 | 0.042 | 0.681 | 0.859 | 0.766 | 0.810 | |
相关系数 | 0.729 | 0.044 | 0.670 | 0.835 | 0.773 | 0.803 | |
ResNet | 互信息 | 0.728 | 0.042 | 0.681 | 0.859 | 0.766 | 0.810 |
欧式距离 | 0.742 | 0.044 | 0.673 | 0.831 | 0.779 | 0.804 | |
余弦相似度 | 0.735 | 0.043 | 0.677 | 0.851 | 0.768 | 0.807 | |
相关系数 | 0.716 | 0.044 | 0.669 | 0.836 | 0.769 | 0.801 |
Table 5.
Classification performance comparison for 2-end increasing sorting method based on different metrics in ACTEC 2019"
模型 | 排序方法 | Ap | Hp | Jp | Rp | Pp | F1 |
---|---|---|---|---|---|---|---|
VGGNet | 互信息 | 0.741 | 0.011 | 0.756 | 0.903 | 0.823 | 0.861 |
欧式距离 | 0.679 | 0.013 | 0.735 | 0.846 | 0.848 | 0.847 | |
余弦相似度 | 0.713 | 0.012 | 0.747 | 0.883 | 0.828 | 0.855 | |
相关系数 | 0.714 | 0.012 | 0.744 | 0.874 | 0.832 | 0.853 | |
GoogLeNet | 互信息 | 0.738 | 0.011 | 0.767 | 0.888 | 0.849 | 0.868 |
欧式距离 | 0.724 | 0.011 | 0.758 | 0.881 | 0.844 | 0.862 | |
余弦相似度 | 0.708 | 0.012 | 0.747 | 0.846 | 0.865 | 0.855 | |
相关系数 | 0.724 | 0.012 | 0.755 | 0.874 | 0.850 | 0.861 | |
ResNet | 互信息 | 0.735 | 0.011 | 0.761 | 0.894 | 0.836 | 0.864 |
欧式距离 | 0.724 | 0.011 | 0.752 | 0.886 | 0.832 | 0.859 | |
余弦相似度 | 0.714 | 0.012 | 0.743 | 0.900 | 0.809 | 0.852 | |
相关系数 | 0.730 | 0.011 | 0.755 | 0.886 | 0.836 | 0.861 |
Table 6.
Classification performance comparison for 2-end increasing sorting method based on different metrics in PTB-XL"
模型 | 排序方法 | Ap | Hp | Jp | Rp | Pp | F1 |
---|---|---|---|---|---|---|---|
VGGNet | 互信息 | 0.325 | 0.023 | 0.509 | 0.733 | 0.624 | 0.674 |
欧式距离 | 0.345 | 0.023 | 0.507 | 0.738 | 0.618 | 0.673 | |
余弦相似度 | 0.334 | 0.023 | 0.504 | 0.739 | 0.614 | 0.671 | |
相关系数 | 0.325 | 0.024 | 0.501 | 0.704 | 0.635 | 0.668 | |
GoogLeNet | 互信息 | 0.357 | 0.022 | 0.522 | 0.745 | 0.636 | 0.686 |
欧式距离 | 0.341 | 0.023 | 0.511 | 0.736 | 0.625 | 0.676 | |
余弦相似度 | 0.339 | 0.023 | 0.511 | 0.740 | 0.623 | 0.676 | |
相关系数 | 0.352 | 0.023 | 0.514 | 0.740 | 0.628 | 0.679 | |
ResNet | 互信息 | 0.354 | 0.023 | 0.517 | 0.737 | 0.634 | 0.682 |
欧式距离 | 0.351 | 0.023 | 0.514 | 0.739 | 0.628 | 0.679 | |
余弦相似度 | 0.348 | 0.023 | 0.512 | 0.728 | 0.633 | 0.677 | |
相关系数 | 0.328 | 0.023 | 0.509 | 0.742 | 0.619 | 0.675 |
[1] | 周明成. 心血管疾病心脏康复现状与发展及思考[J]. 实用心脑肺血管病杂志, 2021, 29(9):6-9. |
Zhou Mingcheng. Current situation, development and thi-nking of cardiac rehabilitation for cardiovascular diseases[J]. Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease, 2021, 29(9):6-9. | |
[2] | Gordon P, Kerton M. Cardiac arrhythmias in the critically ill,anaesthesia and intensive care medicine[J]. Circulation, 2021, 22(5):301-312. |
[3] | Sharma A N, Baranchuk A. Ambulatory external electr-ocardiography monitoring:Holter,extended holter,mobilecardiac telemetry monitoring[J]. Cardiac Electrophysiology Clinics, 2021, 13(3):427-438. |
[4] | Ponnusamy S S, Vijayaraman P. Electrocardiography guided left bundle branch pacing[J]. Journal of Electrocardiology, 2021, 68(9):11-13. |
[5] | 徐利, 徐久强, 冯家乐. 结合CEEMDAN与改进区间阈值的ECG降噪研究[J]. 小型微型计算机系统, 2020, 41(8):1576-1579. |
Xu Li, Xu Jiuqiang, Feng Jiale. Research on ECG denoising combined with CEEMDAN and improved interval threshold[J]. Journal of Chinese Computer Systems, 2020, 41(8):1576-1579. | |
[6] | 刘姝, 邵杰, 张颐婷, 等. 基于双谱和谱特征的心电信号分类方[J]. 电子科技, 2021, 34(2):21-26. |
Liu Shu, Shao Jie, Zhang Yiting, et al. ECG classificationbased on bispectrum and spectral features[J]. ElectronicScience and Technology, 2021, 34(2):21-26. | |
[7] | 张浪飞, 李诗楠, 梁竹关, 等. 基于自适应多元多尺度熵的心电信号分类研究[J]. 计算机应用研究, 2022, 39(5):1505-1509. |
Zhang Langfei, Li Shinan, Liang Zhuguan, et al. Classific-ation of ECG signal based on adaptive multivariate multiscale entropy[J]. Application Research of Computers, 2022, 39(5):1505-1509. | |
[8] | 万静, 张晓瑞, 何云斌, 等. 12导联高频心电信号的特征提取及聚类[J]. 计算机应用研究, 2015, 32(10):2934-2939. |
Wan Jing, Zhang Xiaorui, He Yunbin, et al. Feature ext-raction and clustering of 12 lead high frequency electrocardiogram signals[J]. Application Research of Computers, 2015, 32(10):2934-2939. | |
[9] | Honarvar H, Agarwal C, Somani S, et al. Enhancing convolutional neural network predictions of electrocardiograms with left ventricular dysfunction using a novels ubwaveform representation[J]. Cardiovascular Digital Health Journal, 2022, 3(5):220-231. |
[10] | Acharya U R, Fujita H, Lih O S, et al. Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network[J]. Knowledge-Based Systems, 2017, 132(15):62-71. |
[11] | Wang C, Yang S, Tang X, et al. A 12-lead ECG arrhyth-mia classification method based on 1D densely connected CNN[C]. Shenzhen: Proceedings of the First Machine Learning and Medical Engineering for Cardiovascular Health and Intravascular Imaging and Computer Assisted Stenting, 2019:1125-1133. |
[12] | 葛靖, 刘子龙. 基于CNN和LSTM的睡眠呼吸暂停检测算法[J]. 电子科技, 2021, 34(2):21-26. |
Ge Jing, Liu Zilong. The alorithm based on CNN and LSTM for sleep apnea syndrome detection[J]. Electronic Science and Technology, 2021, 34(2):21-26. | |
[13] | 陈鹏, 刘子龙. 基于GAN-CNN的心律失常识别[J]. 电子科技, 2022, 35(3):45-50. |
Chen Peng, Liu Zilong. Arrhythmia recognition based on GAN-CNN[J]. Electronic Science and Technology, 2022, 35(3):45-50. | |
[14] | Yildirim O. A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification[J]. Comuters in Biology and Medicine, 2018, 96(2):189-202. |
[15] | Karpuz D, Hallioglu O, Toros F, et al. The effect of metilpheniy date, risperidone and combination therapy on ECG in children with attention-deficit hyperactivity disorder[J]. Journal of Electrocardiology, 2017, 50(4):410-415. |
[16] | Ratnaparkhi A, Bormane D, Ghongade R. Performance analysis of fuzzy rough assisted classification and segmentation of paper ECG using mutual information and dependency metric[C]. Palladam: International Conference on ISMAC in Computational Vision and Bio-Engineering, 2018:778-786. |
[17] | Ghosh S M, Bandyopadhyay S, Mitra D. Nonlinear classification of emotion from EEG signal based on maximized mutual information[J]. Expert Systems with Application, 2021, 185(10):114-120. |
[18] | Hannun A Y, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J]. Nature Medicine, 2019, 25(1):65-69. |
[1] | WANG Xiaozhu,YU Lianzhi. Small Object Detection Based on Convolution and Self-Attention of Aggregation [J]. Electronic Science and Technology, 2024, 37(2): 14-22. |
[2] | TIAN Zhixin,XU Zhen,MAO Jian,LIN Binbin,LIAO Wei. Classification Method of Steel Surface Defects Based on Multi-Scale Feature Fusion [J]. Electronic Science and Technology, 2024, 37(2): 87-95. |
[3] | HUANG Zixuan,LI Qiaoxing. Research on Identification of Urban Illegal Vehicles Based on Random Forest Model [J]. Electronic Science and Technology, 2024, 37(1): 66-71. |
[4] | YU Zhihong,LI Feifei. Semi-Supervised Medical Image Segmentation Method Based on Meta-Learning and Neural Architecture Search [J]. Electronic Science and Technology, 2024, 37(1): 17-23. |
[5] | LI Yudong,MA Jinquan,XIE Zongfu,SHEN Xiaolong. Research on Task Scheduling of Heterogeneous Platform Signal Processing [J]. Electronic Science and Technology, 2024, 37(1): 24-32. |
[6] | WANG Jiawei,YU Xiao. Review of Text Classification Research Based on Deep Learning [J]. Electronic Science and Technology, 2024, 37(1): 81-86. |
[7] | ZHANG Dagui,ZHOU Zhifeng,ZHANG Yi,WANG Liduan. TDOA Sound Source Localization Method Based on Particle Swarm Optimization Algorithm [J]. Electronic Science and Technology, 2023, 36(9): 21-28. |
[8] | YUE Shengyao,XU Baiqiang,XU Guidong,XU Chenguang,ZHANG Sai. Super-Resolution Imaging of Laminate Debonding Defects via Deconvolutional Neural Network and Ultrasound Guided Waves [J]. Electronic Science and Technology, 2023, 36(8): 7-13. |
[9] | SUN Hong,ZHAO Yingzhi. Lightweight Generative Adversarial Networks Based on Multi-Scale Gradient [J]. Electronic Science and Technology, 2023, 36(7): 32-38. |
[10] | OU Jingyi,TIAN Ying,XIANG Xin,SONG Qizhe. Fault Diagnosis of Few Shot Industrial Process Based on Transfer BN-CNN Framework [J]. Electronic Science and Technology, 2023, 36(7): 49-55. |
[11] | SHI Jianke,QIAO Meiying,LI Bingfeng,ZHAO Yan. Underwater Occlusion Target Detection Algorithm Based on Attention Mechanism [J]. Electronic Science and Technology, 2023, 36(5): 62-70. |
[12] | LIU Yuwei,CAO Min,FENG Haojia. CNAS Recognition Criteria Automatic Benchmarking System Based on Natural Language Processing [J]. Electronic Science and Technology, 2023, 36(5): 28-33. |
[13] | LIN Zhipeng,SUN Xiaohui,WEN Chenglin. An Extended Dimension Kalman Filter Method Based on Additive Hidden Variables [J]. Electronic Science and Technology, 2023, 36(5): 47-54. |
[14] | CUI Zhuodong,CHEN Wei,YIN Zhong. Helmet Wearing Detection Based on Enhanced Feature Fusion Network [J]. Electronic Science and Technology, 2023, 36(4): 44-51. |
[15] | SUN Hong,ZHANG Yuxiang. Super-Resolution Image Reconstruction Algorithm Based on Multi-Feature Gated Feedback Residual Network [J]. Electronic Science and Technology, 2023, 36(4): 65-70. |