Electronic Science and Technology ›› 2024, Vol. 37 ›› Issue (2): 14-22.doi: 10.16180/j.cnki.issn1007-7820.2024.02.003
Previous Articles Next Articles
WANG Xiaozhu,YU Lianzhi
Received:
2022-09-27
Online:
2024-02-15
Published:
2024-01-18
Supported by:
CLC Number:
WANG Xiaozhu,YU Lianzhi. Small Object Detection Based on Convolution and Self-Attention of Aggregation[J].Electronic Science and Technology, 2024, 37(2): 14-22.
Table 1.
Comparison of VOC data sets under the best input size of each model"
模型 | 输入尺寸 | 参数量/MB | mAP50 | mAP50∶95 |
---|---|---|---|---|
SSD | 300×300 | 26.285 | 0.783 | 0.470 |
YOLOv3 | 416×416 | 61.626 | 0.851 | 0.583 |
YOLOv4-tiny | 416×416 | 5.918 | 0.781 | 0.403 |
YOLOv4 | 416×416 | 64.040 | 0.880 | 0.602 |
YOLOv5s | 640×640 | 7.115 | 0.860 | 0.591 |
本文 | 640×640 | 9.279 | 0.872 | 0.599 |
Table 2.
Comparison of VOC data sets under the unified input size of each model"
模型 | 输入尺寸 | 运算量/GB | mAP50 | mAP50∶95 |
---|---|---|---|---|
SSD | 640×640 | 282.197 | 0.742 | 0.408 |
YOLOv3 | 640×640 | 155.404 | 0.806 | 0.444 |
YOLOv4-tiny | 640×640 | 16.216 | 0.676 | 0.308 |
YOLOv4 | 640×640 | 141.766 | 0.775 | 0.430 |
YOLOv5s | 640×640 | 16.541 | 0.860 | 0.591 |
本文 | 640×640 | 23.040 | 0.872 | 0.599 |
[1] | Gu J X, Wang Z H, Kuen J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition:The Journal of the Pattern Recognition Society, 2018, 77(9):354-377. |
[2] | Lawrence Z, Piotr D. Edge boxes:Locating object proposals from edges[C]. Zurich: European Conference on Computer Vision, 2014:162-169. |
[3] | Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[C]. Montreal: Proceedings of Advances in Neural Information Processing Systems, 2015:805-812. |
[4] |
程旭, 宋晨, 郑钰辉. 基于深度学习的通用目标检测研究综述[J]. 电子学报, 2021, 49(7):1428-1438.
doi: 10.12263/DZXB.20200570 |
Cheng Xu, Song Chen, Zheng Yuhui. A survey of generic object detection methods based on deep learning[J]. Acta Electronica Sinica, 2021, 49(7):1428-1438.
doi: 10.12263/DZXB.20200570 |
|
[5] | Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Columbus: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014:78-87. |
[6] | Girshick R. Fast R-CNN[C]. Santiago: International Conference on Computer Vision, 2015:366-378. |
[7] | Sermanet P, Eigen D, Zhang X, et al. OverFeat:Integrated recognition,localization and detection using convolutional networks[C]. Scottsdale: International Conference on Learning Representations, 2013:264-275. |
[8] | Redmon J, Divvala S, Girshick R, et al. You only look once: Unified,real-time object detection[C]. Boston: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:597-605. |
[9] | Liu W, Anguelov D, Erhan D, et al. SSD:Single shot multi box detector[C]. Amsterdam: Proceedings of European Conference on Computer Vision, 2016:369-378. |
[10] | Redmon J, Farhadi A. YOLO9000:Better,faster, stronger[C]. Honolulu: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2017:1190-1230. |
[11] | Redmon J, Farhadi A. YOLOv3:An incremental improvement[C]. Wellington: IEEE Conference on Computer Vision and Pattern Recognition, 2018:752-768. |
[12] | Lim J S, Astrid M, Yoon H J, et al. Small object detection using context and attention[C]. Jeju island: International Conference on Artificial Intelligence in Information and Communication, 2021:593-599. |
[13] | 郭磊, 王邱龙, 薛伟. 基于改进YOLOv5的小目标检测算法[J]. 电子科技大学学报, 2022, 51(2):251-258. |
Guo Lei, Wang Qiulong, Xue Wei. A small object detection algorithm based on improved YOLOv5[J]. Journal of University of Electronic Science and Technology of China, 2022, 51(2):251-258. | |
[14] |
邱天衡, 王玲, 王鹏. 基于改进YOLOv5的目标检测算法研究[J]. 计算机工程与应用, 2022, 58(13):63-73.
doi: 10.3778/j.issn.1002-8331.2202-0093 |
Qiu Tianheng, Wang Ling, Wang Peng. Research on object detection algorithm based on improved YOLOv5[J]. Computer Engineering and Applications, 2022, 58(13):63-73.
doi: 10.3778/j.issn.1002-8331.2202-0093 |
|
[15] | 张寅, 朱桂熠, 施天俊. 基于特征融合与注意力的遥感图像小目标检测[J]. 光学学报, 2022, 42(24):140-150. |
Zhang Yin, Zhu Guiyi, Shi Tianjun. Small object detection in remote sensing images based on feature fusionand attention[J]. Acta Optica Sinica, 2022, 42(24):140-150. | |
[16] | Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: Common objects in context[J]. European Conference on Computer Vision, 2014(4):740-755. |
[17] |
李昂, 孙士杰, 张朝阳. 改进YOLOv5s的轨道障碍物检测模型轻量化研究[J]. 计算机工程与应用, 2023, 59(4):197-207.
doi: 10.3778/j.issn.1002-8331.2208-0045 |
Li Ang, Sun Shijie, Zhang Chaoyang. Research on lightweight of improved YOLOv5 track obstacle detectio model[J]. Computer Engineering and Applications, 2023, 59(4):197-207.
doi: 10.3778/j.issn.1002-8331.2208-0045 |
|
[18] | Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet:A new backbone that can enhance learning capability of CNN[C]. Seattle: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020:198-206. |
[19] | Lin T Y, Dollar P, Girshick R, et al. Feature pyramid networks for object detection[C]. Honolulu: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2017:357-368. |
[20] | Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:506-522. |
[21] | Pan X, Ge C, Lu R, et al. On the integration of self-attention and convolution[EB/OL].(2021-11-29) [2022-09-26] https://arxiv.org/abs/2111.14556. |
[22] | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:778-789. |
[23] | Rezatofighi H, Tsoi N, Gwak J Y, et al. Generalized intersection over union:A metric and a loss for bounding box regression[C]. Long Beach: Computer Vision and Pattern Recognition, 2019:3012-3022. |
[24] | Zhora G. SIoU Loss:More powerful learning for bounding box regression[EB/OL].(2022-05-25) [2022-09-26] https://arxiv.org/abs/2205.12740. |
[25] |
Everingham M, Eslami S M A, Gool L V, et al. The pascal, visual object classes challenge:A retrospective[J]. International Journal of Computer Vision, 2015, 111(1):98-136.
doi: 10.1007/s11263-014-0733-5 |
[1] | NAN Jiao,SUN Zhanquan. Sorting Method of Multi Leads ECG Based on Mutual Information [J]. Electronic Science and Technology, 2024, 37(2): 55-60. |
[2] | YU Zhihong,LI Feifei. Semi-Supervised Medical Image Segmentation Method Based on Meta-Learning and Neural Architecture Search [J]. Electronic Science and Technology, 2024, 37(1): 17-23. |
[3] | YUE Shengyao,XU Baiqiang,XU Guidong,XU Chenguang,ZHANG Sai. Super-Resolution Imaging of Laminate Debonding Defects via Deconvolutional Neural Network and Ultrasound Guided Waves [J]. Electronic Science and Technology, 2023, 36(8): 7-13. |
[4] | HU Yongyang,LI Miao,MENG Fankai,ZHANG Feng,MENG Yiwei,SONG Yukun. Structured Compression and Acceleration of Network Based on Tiny-YOLOv3 [J]. Electronic Science and Technology, 2023, 36(8): 43-48. |
[5] | SUN Hong,ZHAO Yingzhi. Lightweight Generative Adversarial Networks Based on Multi-Scale Gradient [J]. Electronic Science and Technology, 2023, 36(7): 32-38. |
[6] | OU Jingyi,TIAN Ying,XIANG Xin,SONG Qizhe. Fault Diagnosis of Few Shot Industrial Process Based on Transfer BN-CNN Framework [J]. Electronic Science and Technology, 2023, 36(7): 49-55. |
[7] | ZHA Junwei,ZHANG Hongyan. Dynamic Receptive Field Feature Selection Dehazing Network [J]. Electronic Science and Technology, 2023, 36(7): 56-63. |
[8] | SHI Jianke,QIAO Meiying,LI Bingfeng,ZHAO Yan. Underwater Occlusion Target Detection Algorithm Based on Attention Mechanism [J]. Electronic Science and Technology, 2023, 36(5): 62-70. |
[9] | CUI Zhuodong,CHEN Wei,YIN Zhong. Helmet Wearing Detection Based on Enhanced Feature Fusion Network [J]. Electronic Science and Technology, 2023, 36(4): 44-51. |
[10] | SUN Hong,ZHANG Yuxiang. Super-Resolution Image Reconstruction Algorithm Based on Multi-Feature Gated Feedback Residual Network [J]. Electronic Science and Technology, 2023, 36(4): 65-70. |
[11] | HUANG Yuan,WEI Yunbing,TONG Dongbing,WANG Weigao. Short-Term Photovoltaic Power Prediction Based on VMD and Improved TCN [J]. Electronic Science and Technology, 2023, 36(3): 42-49. |
[12] | ZUO Bin,LI Feifei. An Effective Segmentation Method for COVID-19 CT Image Based on Attention Mechanism and Inf-Net [J]. Electronic Science and Technology, 2023, 36(2): 22-28. |
[13] | YU Guangzeng,ZHANG Qiaoling,ZHOU Yurong. Bearing Fault Diagnosis Based on SC-CNN-BiLSTM [J]. Electronic Science and Technology, 2023, 36(11): 56-65. |
[14] | WANG Qiao,HU Chunyan,LI Feifei. Scene Recognition Algorithm Based on Deep Transfer Learning and Multi-Scale Feature Fusion [J]. Electronic Science and Technology, 2023, 36(11): 19-27. |
[15] | CHEN Ziang,LIU Na,YUAN Ye,LI Qingdu,WAN Lihong. Chinese License Plate Detection and Recognition in Unconstrained Scenarios Based on YOLO [J]. Electronic Science and Technology, 2023, 36(10): 1-8. |
|