Electronic Science and Technology ›› 2024, Vol. 37 ›› Issue (3): 75-83.doi: 10.16180/j.cnki.issn1007-7820.2024.03.010
Previous Articles Next Articles
MA Wenjie, ZHANG Xuanxiong
Received:
2022-11-02
Online:
2024-03-15
Published:
2024-03-11
Supported by:
CLC Number:
MA Wenjie, ZHANG Xuanxiong. Research on Blind Roads and Obstacle Recognition Algorithm Based on Deep Learning[J].Electronic Science and Technology, 2024, 37(3): 75-83.
Table 1.
MiT-B3 indicates the main parameters"
阶段 | 层名 | 参数 |
---|---|---|
Stage 1 | Overlapping Patch Embeding | K1=7;S1=4;P1=3;C1=64 |
Transformer Encoder | R1=8;N1=1;E1=8;L1=3 | |
Stage 2 | Overlapping Patch Embeding | K2=3;S2=2;P2=1;C2=128 |
Transformer Encoder | R2=4;N2=2;E2=8;L2=3 | |
Stage 3 | Overlapping Patch Embeding | K3=3;S3=2;P3=1;C3=320 |
Transformer Encoder | R3=2;N3=5;E3=4;L3=18 | |
Stage 4 | Overlapping Patch Embeding | K4=3;S4=2;P4=1;C4=512 |
Transformer Encoder | R4=1;N4=8;E4=4;L4=3 |
Table 3.
Comparison of obstacle detection results of different algorithms"
方法 | mAP@0.5 /% | mAP@0.75 /% | mAP /% |
---|---|---|---|
Faster R-CNN | 80.45 | 61.39 | 60.52 |
SSD | 84.36 | 62.21 | 64.45 |
YOLOV3 | 85.69 | 67.13 | 65.34 |
RetinaNet (Backbone=ResNet50) | 87.43 | 68.47 | 69.67 |
RetinaNet (Backbone=Transformer) | 89.15 | 71.23 | 71.56 |
本文 | 91.58 | 74.82 | 75.85 |
[1] | 赵磊, 李振伟, 杨晓利, 等. 一种基于图像处理的提示盲道检测方法[J]. 计算机技术与发展, 2021, 31(2):91-96. |
Zhao Lei, Li Zhenwei, Yang Xiaoli, et al. A warning blind sidewalk detection method based on image processing[J]. Computer Technology and Development, 2021, 31(2):91-96. | |
[2] | 莫亚男. 基于Gabor特征的盲道检测与应用[D]. 重庆: 重庆师范大学, 2020:41-52. |
Mo Yanan. Blind path detection and application basedon Gabor feature[D]. Chongqing: Chongqing Normal University, 2020:41-52. | |
[3] | 叶倩倩. 基于深度学习的盲道检测算法研究[D]. 郑州: 郑州轻工业大学, 2022:38-46. |
Ye Qianqian. Research on tactile pavement detection algorithm based on deep learning[D]. Zhengzhou: Zhengzhou University of Light Industry, 2022:38-46. | |
[4] |
Cao Z, Xu X, Hu B, et al. Rapid detection of blind roads and crosswalks by using a lightweight semantic segmentation network[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(10):6188-6197.
doi: 10.1109/TITS.2020.2989129 |
[5] |
Katzschmann R K, Araki B, Rus D. Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(3):583-593.
doi: 10.1109/TNSRE.2018.2800665 pmid: 29522402 |
[6] | Simöes W C S S, De Lucena V F. Blind user wearable audio assistance for indoor navigation based on visual markers and ultrasonic obstacle detection[C]. Nantou: IEEE International Conference on Consumer Electronics, 2016:933-942. |
[7] | 方仁杰, 朱维兵. 基于GPS定位与超声波导盲拐杖的设计[J]. 计算机测量与控制, 2011, 19(5):1154-1157. |
Fang Renjie, Zhu Weibing. Design of guiding blind cane based on GPS positioning and ultrasonic detection[J]. Computer Measurement & Control, 2011, 12(5):1154-1157. | |
[8] | Girshick R. Fast R-CNN[C]. Santiago: Proceedings of theIEEE International Conference on Computer Vision, 2015:2001-2011. |
[9] | Redmon J, Divvala S, Girshick R, et al. You only look once:Unified,real-time object detection[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:899-905. |
[10] | Liu W, Anguelov D, Erhan D, et al. Ssd:Single shot mu-ltibox detector[C]. Amsterdam: Euro Pean Conference on Computer Vision, 2016:56-61. |
[11] | 段中兴, 王剑, 丁青辉, 等. 基于深度学习的盲道障碍物检测算法研究[J]. 计算机测量与控制, 2021, 29(12):27-32. |
Duan Zhongxing, Wang Jian, Ding Qinghui, et al. Research on obstacle detection algorithm of blind path based on deep learning[J]. Computer Measurement and Control, 2021, 29(12):27-32. | |
[12] | 赵崇, 迟蒙蒙, 储聪, 等. 导盲犬行走机构运动仿真及其视觉识别算法研究[J]. 电子科技, 2021, 34(9):66-72. |
Zhao Chong, Chi Mengmeng, Chu Cong, et al. Research on motion simulation and visual recognition algorithm of guide dog walking mechanism[J]. Electronic Science and Technology, 2021(9):66-72. | |
[13] |
Wu D, Liao M W, Zhang W T, et al. Yolop:You only look once for panoptic driving perception[J]. Machine Intelligence Research, 2022, 19(6):550-562.
doi: 10.1007/s11633-022-1339-y |
[14] | Xie E, Wang W, Yu Z, et al. SegFormer:Simple and efficient design for semantic segmentation with transformers[J]. Advances in Neural Information Processing Systems, 2021, 34(4):12077-12090. |
[15] | Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]. Venice: Proceedings of the IEEE International Conference on Computer Vision, 2017:628-633. |
[16] | He K, Zhang X, Ren S, et al. Deep residual learning forimage recognition[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:269-276. |
[17] | Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]. Venice: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:315-320. |
[18] |
He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916.
doi: 10.1109/TPAMI.2015.2389824 pmid: 26353135 |
[19] | 黄静, 谢宣. 基于改进的SSD监理目标检测研究[J]. 电子科技, 2022, 35(5):7-13. |
Huang Jing, Xie Xuan. Research on supervision object detection based on improved SSD[J]. Electronic Science and Technology, 2022, 35(5):7-13. | |
[20] | Bodla N, Singh B, Chellappa R, et al. Soft-NMS:Improving object detection with one line of code[C]. Venice: Proceedings of the IEEE International Conference on Computer Vision, 2017:698-705. |
[1] | NIE Chunfang, HAO Zhenghang, CHEN Zhuo, HE Puxiang. Research on Electromagnetic Transient Acceleration Simulation Technoloy of New-Type Power System [J]. Electronic Science and Technology, 2024, 37(3): 18-25. |
[2] | YAN Yaling, WANG Luoguo, YAN Rui, WU Ming. Research on An Improved Closed Loop Decoding Algorithm [J]. Electronic Science and Technology, 2024, 37(3): 26-33. |
[3] | WANG Xiaozhu,YU Lianzhi. Small Object Detection Based on Convolution and Self-Attention of Aggregation [J]. Electronic Science and Technology, 2024, 37(2): 14-22. |
[4] | TIAN Zhixin,XU Zhen,MAO Jian,LIN Binbin,LIAO Wei. Classification Method of Steel Surface Defects Based on Multi-Scale Feature Fusion [J]. Electronic Science and Technology, 2024, 37(2): 87-95. |
[5] | YU Zhihong,LI Feifei. Semi-Supervised Medical Image Segmentation Method Based on Meta-Learning and Neural Architecture Search [J]. Electronic Science and Technology, 2024, 37(1): 17-23. |
[6] | HUANG Zixuan,LI Qiaoxing. Research on Identification of Urban Illegal Vehicles Based on Random Forest Model [J]. Electronic Science and Technology, 2024, 37(1): 66-71. |
[7] | LI Zenghui,WANG Wei. Research Progress of Medical Image Segmentation Method Based on Deep Learning [J]. Electronic Science and Technology, 2024, 37(1): 72-80. |
[8] | WANG Jiawei,YU Xiao. Review of Text Classification Research Based on Deep Learning [J]. Electronic Science and Technology, 2024, 37(1): 81-86. |
[9] | FU Yizhao,LI Zi. Marx Pulse Source with Multistage Resonant Charging [J]. Electronic Science and Technology, 2024, 37(1): 9-16. |
[10] | Bin ,WANG Sen. Visual Detection of Structural Cracks Using Depth Deformable Contour ModelLAI [J]. Electronic Science and Technology, 2023, 36(9): 35-40. |
[11] | DANG Xiaofang,CAI Xingyu. Transformer-Based Maneuvering Target Tracking [J]. Electronic Science and Technology, 2023, 36(9): 86-92. |
[12] | HU Yongyang,LI Miao,MENG Fankai,ZHANG Feng,MENG Yiwei,SONG Yukun. Structured Compression and Acceleration of Network Based on Tiny-YOLOv3 [J]. Electronic Science and Technology, 2023, 36(8): 43-48. |
[13] | SUN Hong,ZHAO Yingzhi. Lightweight Generative Adversarial Networks Based on Multi-Scale Gradient [J]. Electronic Science and Technology, 2023, 36(7): 32-38. |
[14] | ZHA Junwei,ZHANG Hongyan. Dynamic Receptive Field Feature Selection Dehazing Network [J]. Electronic Science and Technology, 2023, 36(7): 56-63. |
[15] | ZENG Xinxin,ZHANG Hongyan. A Farmland Parcel Extraction Network Based on Multi-Scale Semantic Information Enhancement [J]. Electronic Science and Technology, 2023, 36(7): 70-74. |
|