[1] |
Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-232.
|
[2] |
刘林嵩, 仝明磊, 吴东亮. SA-CapsNet:自注意力胶囊网络[J]. 计算机应用研究, 2021, 38(10):3005-3008,3039.
|
|
Liu Linsong, Gong Minglei, Wu Dongliang. SA-CapsNet: Self-attention capsule network[J]. Application Research of Computers, 2021, 38(10):3005-3008,3039.
|
[3] |
张伟, 刘娜, 江洋, 等. 基于YOLO神经网络的垃圾检测与分类[J]. 电子科技, 2022, 35(10):45-50.
|
|
Zhang Wei, Liu Na, Jiang Yang, et al. Garbage detection and classification based on YOLO neural network[J]. Electronic Science and Technology, 2022, 35(10):45-50.
|
[4] |
房巾莉, 吕毅斌, 王樱子, 等. 基于水平集的医学图像分割算法[J]. 电子科技, 2021, 34(2):12-20.
|
|
Fang Jinli, Lü Yibin, Wang Yingzi, et al. A novel medical image segmentation algorithm based on level set[J]. Electronic Science and Technology, 2021, 34(2):12-20.
|
[5] |
李业良, 张二华, 唐振民. 基于混合式注意力机制的语音识别研究[J]. 计算机应用研究, 2020, 37(1): 131-134.
|
|
Li Yeliang, Zhang Erhua, Tang Zhenmin. Research on speech recognition based on hybrid attention mechanism[J]. Application Research of Computers, 2020, 37(1):131-134.
|
[6] |
Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules[C]. Long Beach: Proceedings of Neural Information Processing Systems, NeurIPS, 2017:3856-3866.
|
[7] |
Xiang C, Zhang L, Tang Y, et al. MS-CapsNet: A novel multiscale capsule network[J]. IEEE Signal Processing Letters, 2018, 25(12):1850-1854.
|
[8] |
Rajasegaran J, Jayasundara V, Jayasekara S, et al. Deepcaps: Going deeper with capsule networks[C]. Los Angeles: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019:10725-10733.
|
[9] |
Gu J D. Interpretable graph capsule networks for object recognition[C]. Vancouver: Proceedings of the AAAI Conference on Artificial Intelligence, 2021:1469-1477.
|
[10] |
Huang R Y, Li J P, Wang S H, et al. A robust weight-shared capsule network for intelligent machinery fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(10):6466-6475.
|
[11] |
Jia X F, Li J Q, Zhao B T, et al. Res-CapsNet:Residual capsule network for data classification[J]. Neural Process Letter, 2022, 54(5):4229-4245.
|
[12] |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]. Seattle: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778.
|
[13] |
Choi J, Seo H, Im S, et al. Attention routing between capsules[C]. Seoul: IEEE/CVF International Conference on Computer Vision Workshops, 2019:1981-1989.
|
[14] |
Hinton G E, Sabour S, Frosst N. Matrix capsules with EM routing[C]. Vancouver: International Conference on Learning Representations, 2018:1-15.
|
[15] |
Ribeiro F D S, Leontidis G, Kollias S. Capsule routing via variational bayes[C]. New York: AAAI Conference on Artificial Intelligence, 2020:3749-3756.
|
[16] |
Hahn T, Pyeon M, Kim G. Self-routing capsule networks[C]. Vancouver: Advances in Neural Information Processing Systems, 2019:7658-7667.
|
[17] |
Gu J D, Tresp V. Improving the robustness of capsule networks to image affine transformations[C]. Seattle: IEEE Conference on Computer Vision and Pattern Recognition, 2020:7283-7291.
|
[18] |
Zhang S F, Zhao W, Wu X F, et al. Fast dynamic routing based on weighted kernel density estimation[C]. Daegu: International Symposium on Artificial Intelligence and Robotics, 2021: 5281-5297.
|
[19] |
Jeong T, Lee Y, Kim H. Ladder capsule network[C]. New York: International Conference on Machine Learning, 2019:3071-3079.
|
[20] |
Lenssen J E, Fey M, Libuschewski P. Group equivariant capsule networks[C]. Montréal: Advances in Neural Information Processing Systems, 2018:8844-8853.
|
[21] |
Kosiorek A R, Sabour S, Teh Y W, et al. Stacked capsule autoencoders[C]. Vancouver: Advances in Neural Information Processing Systems, 2019:15486-15496.
|