[1] |
Mitchell T M. Machine learning[M]. New York: McGraw-hill,2007:1-282.
|
[2] |
Le Cun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
|
[3] |
Lin W, Sun M T, Poovandran R, et al. Human activity recog-nition for video surveillance[C]. Seattle: IEEE International Symposium on Circuits and Systems,2008:2737-2740.
|
[4] |
Simonyan K, Zisserman A. Two-stream convolutional net-works for action recognition in videos[J]. Advances in Neural Information Processing Systems, 2014, 27(6):568-576.
|
[5] |
Zong M, Wang R, Chen X, et al. Motion saliency based multi-stream multiplier ResNets for action recognition[J]. Image and Vision Computing, 2021, 10(7):104-108.
|
[6] |
Tran D, Bourdev L, Fergus R, et al. Learning spatiotemporal features with 3D convolutional networks[C]. Santiago: Proceedings of the IEEE International Conference on Computer Vision,2015:4489-4497.
|
[7] |
Du W, Wang Y, Qiao Y. Rpan:An end-to-end recurrent pose-attention network for action recognition in videos[C]. Venice: Proceedings of the IEEE International Conference on Computer Vision,2017:3725-3734.
|
[8] |
Sun L, Jia K, Chen K, et al. Lattice long short-term memory for human action recognition[C]. Venice: Proceedings of the IEEE International Conference on Computer Vision,2017:2147-2156.
|
[9] |
Perrett T, Damen D. DDLSTM:Dual-domain LSTM for cross-dataset action recognition[C]. Los Angeles: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:7852-7861.
|
[10] |
Meng Y, Lin C C, Panda R, et al. Arnet:Adaptive frame resolution for efficient action recognition[C]. Glasgow:Computer Vision-ECCV: The Sixteenth European Conference,2020: 86-104.
|
[11] |
Li M, Chen S, Chen X, et al. Actional-structural graph convolutional networks for skeleton-based action recognition[C]. Los Angeles: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:3595-3603.
|
[12] |
Cheng K, Zhang Y, He X, et al. Skeleton-based action reco-gnition with shift graph convolutional network[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:183-192.
|
[13] |
Song Y F, Zhang Z, Shan C, et al. Constructing stronger and faster baselines for skeleton-based action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(2):1474-1488.
|
[14] |
苏波, 柴自强, 王莉, 等. 基于姿态估计的八段锦序列动作识别与评估[J]. 电子科技, 2022, 35(12):84-90.
|
|
Su Bo, Chai Ziqiang, Wang Li, et al. Eight-section brocade sequence action recognition and evaluation based on poseestimation[J]. Electronic Science and Technology, 2022, 35(12):84-90.
|
[15] |
Newell A, Yang K, Deng J. Stacked hourglass networks for human pose estimation[C]. Amsterdam:Computer Vision-ECCV: The Fourteenth European Conference,2016:483-499.
|
[16] |
Toshev A, Szegedy C. Deeppose:Human pose estimation via deep neural networks[C]. Columbus: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2014:1653-1660.
|
[17] |
Wei S E, Ramakrishna V, Kanade T, et al. Convolutional pose machines[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016: 4724-4732.
|
[18] |
Cheng B, Xiao B, Wang J, et al. Higherhrnet: Scaleaware representation learning for bottomup human pose estimation[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:5386-5395.
|
[19] |
Geng Z, Sun K, Xiao B, et al. Bottomup human pose estimation via disentangled keypoint regression[C]. Online: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:14676-14686.
|
[20] |
Sun K, Xiao B, Liu D, et al. Deep high-resolution representation learning for human pose estimation[C]. Los Angeles: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:5693-5703.
|
[21] |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]. Salt Lake City: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018:7132-7141.
|
[22] |
Luo Z, Wang Z, Huang Y, et al. Rethinking the heatmap regression for bottomup human pose estimation[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:13264-13273.
|