[1] |
He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916.
doi: 10.1109/TPAMI.2015.2389824
pmid: 26353135
|
[2] |
Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
|
[3] |
Vuola A O, Akram S U, Kannala J. Mask-RCNN and U-net ensembled for nuclei segmentation[C]. Venice: IEEE the Sixteenth International Symposium on Biomedical Imaging,2019:1120-1136.
|
[4] |
Zhang J, Xie Z, Sun J, et al. A cascaded R-CNN with multiscale attention and imbalanced samples for traffic sign detection[J]. IEEE Access, 2020(8):29742-29754.
|
[5] |
Redmon J, Divvala S, Girshick R, et al. You only look once:Unified,real-time object detection[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:747-769.
|
[6] |
Liu W, Anguelov D, Erhan D, et al. SSD:Single shot multibox detector[C]. Amsterdam: European Conference on Computer Vision,2016:1017-1120.
|
[7] |
田智慧, 孙盐盐, 魏海涛. 基于SSD模型的交通标志检测算法[J]. 计算机应用与软件, 2021, 38(12):201-206.
|
|
Tian Zhihui, Sun Yanyan, Wei Haitao. Traffic sign dtection algorithm based on SSD model[J]. Computer Applications and Software, 2021, 38(12):201-206.
|
[8] |
廖璐明, 张伟. 基于改进VGG16网络的混合批量训练交通标志识别[J]. 电子科技, 2021, 34(8):8-13.
|
|
Liao Luming, Zhang Wei. Batch mixed training trafic sign recognition based on improved VGG16 nework[J]. Electronic Science and Technology, 2021, 34(8):8-13.
|
[9] |
Purkait P, Zhao C, Zach C. SPP-Net:Deep absolute pse regression with synthetic views[EB/OL].(2017-12-09)[2022-12-09]https://arxiv.org/abs/1712.03452.
|
[10] |
Liu S, Huang D. Receptive field block net for accuate and fast object detection[C]. Munich: Proceedins of the European Conference on Computer Vision,2018:699-723.
|
[11] |
Wang Q, Wu B, Zhu P, et al. ECA-Net:Efficient chanel attention for deep convolutional neural networks[EB/OL].(2020-04-07)[2022-12-09]https://arxiv.org/abs/1910.03151.
|
[12] |
Hu J, Shen L, Sun G. Squeeze-and-excitation network[C]. Cham: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:2101-2237.
|
[13] |
Woo S, Park J, Lee J Y, et al. Cbam:Convolutional bock attention module[C]. Munich: Proceedings of the European Conference on Computer Vision,2018:477-489.
|
[14] |
Wang X, Zhang R, Kong T, et al. Solov2:Dynamic ad-fast instance segmentation[EB/OL].(2020-10-23)[2022-12-09] https://arxiv.org/abs/2003.10152.
|
[15] |
Zhu Z, Liang D, Zhang S, et al. Traffic-sign detection and classification inthe wild[C]. Las Vegas: Proceeings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:1015-1187.
|
[16] |
Lin T Y, Maire M, Belongie S, et al. Microsoft coco:Common objects in context[C]. Zurich: European Conference on Computer Vision,2014:117-137.
|
[17] |
Everingham M, Van Gool L, Williams C K I, et al. The pascal visual object classes challenge[J]. International Journal of Computer Vision, 2010, 88(2):303-338.
|
[18] |
Zhang J, Huang M, Jin X, et al. A real-time Chinese traffic sign detection algorithm based on modified YOLOv2[J]. Algorithms, 2017, 10(4):127-139.
|
[19] |
张莹, 刘子龙, 万伟. 基于Faster R-CNN的无人机车辆目标检测[J]. 电子科技, 2021, 34(11):11-20.
|
|
Zhang Ying, Liu Zilong, Wan Wei. UAVvehicle target detection based on Faster R-CNN[J]. Electronic Science and Technology, 2021, 34(11):11-20.
|