Electronic Science and Technology ›› 2020, Vol. 33 ›› Issue (12): 59-66.doi: 10.16180/j.cnki.issn1007-7820.2020.12.012
Previous Articles Next Articles
CHENG Junhua,ZENG Guohui,LIU Jin
Received:
2019-09-18
Online:
2020-12-15
Published:
2020-12-22
Supported by:
CLC Number:
CHENG Junhua,ZENG Guohui,LIU Jin. Research on Complex Background Image Classification Method Based on Deep Learning[J].Electronic Science and Technology, 2020, 33(12): 59-66.
[1] | Bishop C. Pattern recognition and machine learning[M]. Berlin:Springer, 2006. |
[2] |
Schmidhuber J. Deep learning in neural networks: an overview[J]. Neural Networks, 2015,61(3):85-117.
doi: 10.1016/j.neunet.2014.09.003 |
[3] |
Bengio Y, Lecun Y, Hinton G. Deep learning[J]. Nature, 2015,52(1):436-444.
doi: 10.1038/052436a0 |
[4] | 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017,40(6):1229-1251. |
Zhou Feiyan, Jin Linpeng, Dong Jun. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017,40(6):1229-1251. | |
[5] | Ahmed A, Hai T. Review of deep convolution neural network in image classification[C]. Piscataway:Intrenational Conference in Redar, Antenna,Microwave,Electronics and Teleccommuntications, 2017. |
[6] | 龙满生, 欧阳春娟, 刘欢, 等. 基于卷积神经网络与迁移学习的油茶病害图像识别[J]. 农业工程学报, 2018,34(18):194-201. |
Long Mansheng, Ouyang Chunjuan, Liu Huan, et al. Image recognition of Camellia oleifera diseases based on convolutional neural network & transfer learning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(18):194-201. | |
[7] | 何雪英, 韩忠义, 魏本征. 基于深度学习的乳腺癌病理图像自动分类[J]. 计算机工程与应用, 2018,54(12):121-125. |
He Xueying, Han Zhongyi, Wei Benzheng. Breast cancer histopathological image auto-classification using deep learning[J]. Computer Engineering and Applications, 2018,54(12):121-125. | |
[8] | 王鑫, 李可, 徐明君, 等. 改进的基于深度学习的遥感图像分类方法[J]. 计算机应用, 2019,39(2):1-7. |
Wang Xin, Li Ke, Xu Mingjun, et al. Improved remote sensing image classification method based on deep learning[J]. Journal of Computer Applications, 2019,39(2):1-7. | |
[9] |
Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(4):640-651.
doi: 10.1109/TPAMI.2016.2572683 pmid: 27244717 |
[10] | Szegedy C, Loffe S, Vanhoucke V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[J/OL]. (2016-08-23)[2019-03-11] https://arxiv.org/abs/1602.07261.pdf. |
[11] | He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]. Las Vegas:IEEE Conference on Computer Vision and Pattern Recognition, 2016. |
[12] | Huang G, Liu Z, Maaten L, et al. Huang G,Liu Z,Maaten L,et al.Densely connected convolutional networks[J/OL]. (2018-01-28)[2019-03-11]. http://arxiv.org/pdf/1608.06993.pdf. |
[13] | Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]. Pereira:International Conference on Neural Information Processing Systems, 2012. |
[14] | Simonyan K, Zisserman A.Very deep convolutional networks for large-scale image recognition[J/OL]. ( (2015-04-10)[2019-03-15]. https://arxiv.org/abs/1409.1556. |
[15] | Feng Y Y, Zeng X Y, Yang Y F. Study on the optimization of CNN based on image identification[C]. Wuxi:Distributed Computing and Applications for Business Engineering and Science, 2019. |
[16] | Zhang K, Guo Y R, Wang X S, et al. Multiple feature reweight DenseNet for image classification[J]. IEEE Access, 2019(7):9872-9880. |
[17] |
Mohamed A A, Berg W A, Peng H, et al. A deep learning method for classifying mammographic breast density categories[J]. Medical Physics, 2018,45(1):314-321.
doi: 10.1002/mp.12683 pmid: 29159811 |
[18] | Girshick R. Fast R-CNN[C]. Santiago: Proceeding of IEEE International Conference on Computer Vision,ICCV Press, 2015. |
[19] | Zhang C, Li R, Huang Q, et al. Hierarchical deep semantic representation for visual categorization[J]. Neurocomputing, 2017,25(7):88-96. |
[1] | LI Hui,WANG Yicheng. CNNCIFG-Attention Model for Text Sentiment Classifcation [J]. Electronic Science and Technology, 2022, 35(2): 46-51. |
[2] | CHENG Xiaoya,ZHANG Lei. Research on Occluded Face Recognition Method Based on Deep Learning [J]. Electronic Science and Technology, 2022, 35(1): 35-39. |
[3] | ZHAO Chong,CHI Mengmeng,CHU Cong,ZHANG Peng. Research on Motion Simulation and Visual Recognition Algorithm of Guide Dog Walking Mechanism [J]. Electronic Science and Technology, 2021, 34(9): 66-72. |
[4] | ZHAN Yinwei,ZHU Baiwan,YANG Zhuo. Research and Application of Vehicle Face Recognition Algorithm [J]. Electronic Science and Technology, 2021, 34(8): 1-7. |
[5] | LIAO Luming,ZHANG Wei. Batch Mixed Training Traffic Sign Recognition Based on Improved VGG16 Network [J]. Electronic Science and Technology, 2021, 34(8): 8-13. |
[6] | SI Mingming,CHEN Wei,HU Chunyan,YIN Zhong. Fundus Blood Vessel Image Segmentation Combining Resnet50 and U-Net [J]. Electronic Science and Technology, 2021, 34(8): 19-24. |
[7] | MA Lixin,DOU Chenfei,SONG Chencan,YANG Tianxiao. Insulator Nondestructive Testing Based on Feature Fusion CNN [J]. Electronic Science and Technology, 2021, 34(7): 26-30. |
[8] | GU Wei,LI Feifei,CHEN Qiu. Pedestrian Detection Algorithm Based on Multiple Feature Fusion [J]. Electronic Science and Technology, 2021, 34(5): 29-34. |
[9] | XUE Yongjie,JU Zhiyong. Fish Recognition Algorithm Based on Improved AlexNet [J]. Electronic Science and Technology, 2021, 34(4): 12-17. |
[10] | SHAO Hang,WANG Yongxiong,QIN Yulong. Digital Image Composition Optimization Based on Salient Feature Algorithm [J]. Electronic Science and Technology, 2021, 34(3): 36-42. |
[11] | FANG Jinli,LÜ Yibin,WANG Yingzi,TANG Shengnan,WU Dean. A Novel Medical Image Segmentation Algorithm Based on Level Set [J]. Electronic Science and Technology, 2021, 34(2): 12-20. |
[12] | YAN Chao,SUN Zhanquan,TIAN Engang,ZHAO Yangyang,FAN Xiaoyan. Research Progress of Medical Image Segmentation Based on Deep Learning [J]. Electronic Science and Technology, 2021, 34(2): 7-11. |
[13] | ZHANG Can,CHEN Wei,YIN Zhong. Semantic Segmentation of Cervical Cell Image Based on Weak Supervision [J]. Electronic Science and Technology, 2021, 34(12): 68-74. |
[14] | ZHANG Ying,LIU Zilong,WAN Wei. UAV Vehicle Target Detection Based on Faster R-CNN [J]. Electronic Science and Technology, 2021, 34(11): 11-20. |
[15] | LI Cheng,LIU Hao,JIANG Xifeng,WU Junfa,HAN Wengang,GAO Jianguo. Intelligent Diagnosis Algorithm of Generator Stator and Rotor Based on VGG Network [J]. Electronic Science and Technology, 2021, 34(11): 62-66. |